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Behavioral/Systems/Cognitive

Uncovering Intrinsic Connectional Architecture of
Functional Networks in Awake Rat Brain

Zhifeng Liang, Jean King, and Nanyin Zhang
Center for Comparative Neuroimaging, Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts 01655

Intrinsic connectional architecture of the brain is a crucial element in understanding the governing principle of brain organization. To
date, enormous effort has been focused on addressing this issue in humans by combining resting-state functional magnetic resonance
imaging (rsfMRI) with other techniques. However, this research area is significantly underexplored in animals, perhaps because of
confounding effects of anesthetic agents used in most animal experiments on functional connectivity. To bridge this gap, we have
systematically investigated the intrinsic connectional architecture in the rodent brain by using a previously established awake-animal
imaging model. First, group independent component analysis was applied to the rsfMRI data to extract elementary functional clusters of
the brain. The connectional relationships between these clusters, as evaluated by partial correlation analysis, were then used to construct
a graph of whole-brain neural network. This network exhibited the typical features of small-worldness and strong community structures
seen in the human brain. Finally, the whole-brain network was segregated into community structures using a graph-based analysis. The
results of this work provided a functional atlas of intrinsic connectional architecture of the rat brain at both intraregion and interregion
levels. More importantly, the current work revealed that functional networks in rats are organized in a nontrivial manner and conserve
fundamental topological properties that are also seen in the human brain. Given the high psychopathological relevance of network
organization of the brain, this study demonstrated the feasibility of studying mechanisms and therapies of multiple neurological and
psychiatric diseases through translational research.

Introduction
The effort to understand the connectional architecture of the
brain has benefited tremendously from the advent of resting-
state functional magnetic resonance imaging (rsfMRI). rsfMRI is
a technique that noninvasively measures functional connectiv-
ity without external stimulation based on spontaneous low-
frequency fluctuations of the fMRI signal (Biswal et al., 1995; Fox
and Raichle, 2007). Using this technique, resting-state functional
connectivity (RSFC) has been consistently revealed in multiple
networks of the human brain (Biswal et al., 1995; Greicius et al.,
2003; Fox et al., 2005), and has been shown to be altered by the
effects of sleep, anesthesia, and aging (Stevens et al., 2008; Horo-
vitz et al., 2009). Recent studies have also delineated significant
influences of various pathological conditions on RSFC (Greicius
et al., 2007), indicating vital neurobiological and psychopatho-
logical relevance (Kennedy et al., 2006; Albert et al., 2009).

Well documented properties of intraregional and interre-
gional connectivity make it extremely intriguing to extend the
RSFC research at local brain regions to global brain networks.

Using graph-based analysis, separately identified brain networks
subserving different functions in humans were found to topolog-
ically organize in a nontrivial manner to support efficient in-
formation processing (Wang et al., 2010). Graph theoretical
approaches in rsfMRI use anatomically or functionally defined
regions of interest (ROIs) as vertices, and connectivity between
ROIs as edges. These approaches have revealed that the human
brain’s networks are characterized by properties of small-world
topology, highly connected hub, and high modularity (Bullmore
and Sporns, 2009). These findings are crucial because they iden-
tified the governing principle of the network organization of the
human brain; the same methods can be used to examine altera-
tions of topological configuration of the brain in response to
external stimulation or in different pathological conditions
(Liu et al., 2008; Bassett and Bullmore, 2009). Therefore, these
methods may serve as a potential biomarker of various mental
disorders.

To date, the majority of studies on intrinsic connectional or-
ganization of the brain have been conducted in humans. System-
atic investigations of this issue in different animal models have
been significantly underexplored (Vincent et al., 2007; Pawela et
al., 2008; Schwarz et al., 2009), partially attributed to confound-
ing effects of anesthetic agent used in animal studies on RSFC
(Massimini et al., 2005; Lu et al., 2007; Liu et al., 2010). Conse-
quently, it is very important to explore RSFC in awake animals
not only because it can provide invaluable information regarding
intrinsic connectional architecture of the animal brain and its
reconfiguration in response to cognitive and emotional stimuli,
but also may provide a unique window to explore comparative
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functional anatomy between species. Moreover, understanding
connectional architecture in animals will allow us to investigate
multiple psychiatric and neurological diseases using translational
models. Recently, we have successfully demonstrated the feasibil-
ity of mapping RSFC in awake rats (Zhang et al., 2010) based on
an awake-animal imaging model that has been well established in
our laboratory (King et al., 2005; Ferris et al., 2006). Using the
same animal model here, we have characterized the intrinsic net-
work architecture in the awake rat.

Materials and Methods
Animals. Sixteen adult male Long–Evans rats (350 – 450 g) were obtained
from Charles River Laboratories. Animals were housed in Plexiglas cages
(two per cage) and maintained in ambient temperature (22–24°C) on a
12 h light:12 h dark schedule. Food and water were provided ad libitum.
All studies were approved by Institutional Animal Care and Use Com-
mittee of the University of Massachusetts Medical School.

Acclimation procedure. All rats were acclimated to MRI restraint and
noise as previously described (King et al., 2005; Ferris et al., 2006).
Briefly, rats were anesthetized with isoflurane and secured in Plexiglas
stereotaxic head holder using plastic ear-bars. Emla cream (AstraZeneca)
was applied tropically to minimize pain of mechanical restraint. Animals
were then placed into black opaque tube mock scanner with tape-
recorded scanner noises. Animals were acclimated for 8 d, one session per
day. The time for exposure was increased from 15 min on the first day to
90 min on days 6, 7, and 8, with an increment of 15 min per day (King et
al., 2005).

Animal preparation. Under short-acting isoflurane gas, the animal was
fitted into a head restrainer with a built-in coil. The head was placed into
the cylindrical head-holder with the canines secured over a bite bar, the
nose secured with a nose clamp, and ears positioned inside the head-
holder with adjustable screws fitted into lateral sleeves. The body of the
animal was placed into a body restrainer that allowed unrestricted respi-
ration. After the animal was set up, the isoflurane gas was removed and
the restraining system was positioned in the magnet. Animals were fully
conscious within 10 –15 min.

MR experiments. All experiments were performed on a Bruker 4.7T/40
cm horizontal magnet interfaced with a Biospec Bruker console. A dual
1H radiofrequency coil configuration (Insight NeuroImaging Systems),
consisting of a volume coil for exciting MRI signal and a surface coil for
receiving MRI signal, was used. The volume and surface coils were ac-
tively tuned and detuned to prevent mutual coil coupling.

For each session, anatomical images were acquired with a fast spin-
echo sequence [rapid acquisition with relaxation enhancement (RARE)]
with the following parameters: repetition time (TR), 2125 ms; RARE
factor, 8; echo time (TE), 50 ms; matrix size, 256 � 256; field of view
(FOV), 3.2 � 3.2 cm2; slice number, 18; slice thickness, 1 mm. T2 *-
weighted gradient-echo images coving the whole brain were then ac-
quired using the echo-planar imaging (EPI) sequence with following
parameters: TR, 1 s; TE, 30 ms; flip angle, 60°; matrix size, 64 � 64; FOV,
3.2 � 3.2 cm2; slice number, 18; slice thickness, 1 mm. Two hundred EPI
volumes were acquired for each run, and six runs were obtained for each
session. Rats were in resting state during all imaging sessions.

Preprocessing of imaging data. Imaging data were preprocessed using
Medical Image Visualization and Analysis (MIVA, http://ccni.wpi.edu/),
Statistical Parametric Mapping (SPM8) software (Wellcome Depart-
ment of Cognitive Neurology, London, UK), and MATLAB (Math-
Works). All images were first aligned and coregistered with MIVA as
previously described (Zhang et al., 2010). After registration, all func-
tional images were preprocessed with steps of motion correction, spatial
smoothing (full-width at half-maximum, 1 mm), voxelwise linear de-
trending, and 0.002– 0.1 Hz bandpass filtering. Datasets with excessive
motion (�0.25 mm, eight runs in total) were discarded, resulting in a
total of 88 runs for subsequent analysis.

Independent component analysis. Group independent component
analysis (ICA) (Calhoun et al., 2001) was performed using GIFT toolbox
(http://www.nitrc.org/projects/gift/). The number of components was
set at 40 (Hutchison et al., 2010). The infomax algorithm was used to

perform spatial ICA and independent components were scaled to z
scores. Time courses of individual components for individual scans were
extracted. Among the spatial maps of all 40 components, two were lo-
cated at CSF areas and were identified as artifactual components.

Direct connectivity and graph theory analysis. Time courses of 40 com-
ponents were used in direct connectivity analysis. For each individual
RSFC run, the partial correlation coefficient between time courses of
each pair of components was calculated, conditioning on time courses of
the other 38 components. This step yielded a 40 � 40 partial correlation
matrix for each run. Partial correlation coefficients (r values) were trans-
formed to z scores and then averaged across all runs and across all ani-
mals. The final partial correlation matrix was generated by transforming
the averaged z scores back to the r values. Each element of this matrix
represented the strength of direct connectivity between two components.
We only focused on positive partial correlation coefficients, although
negative coefficients were also detected. The significance of direct con-
nectivity was calculated by using a one-sample t test and thresholded at
p � 0.01 (n � 88, uncorrected), based on all 88 partial correlation
matrices. The two artifactual components did not show significant con-
nections with other components, and thus were eliminated in further
graph-theory analyses. As a result, a 38 � 38 adjacency matrix was gen-
erated with each element, aij, describing the significant direct connection
between each two components based on the p value:

aij � � 1, if component i and j are conncted (i.e., p � 0.01)
0, otherwise .

Based on this adjacency matrix, the community structure of the rat brain
was obtained by using the spectral partitioning method (Newman, 2006).
Modularity Q is defined as follows:

Q �
1

4m�
ij
�aij �

kikj

2m���ci,cj�,

where m is the total number of edges in the network, ki and kj are the
degree of each vertex, ci is the group to which vertex i belongs, and �(ci,cj)
is the Kronecker delta symbol.

The partitioning analysis followed the procedure used previously
(Newman, 2006) and consisted of two steps. In the first step, we obtained
a single solution of partitioning by using the spectral approach based on
the leading eigenvector of the modularity matrix (Newman, 2006). This
step, as pointed out by Newman (2006), gives an excellent guide to the
general form that the communities should take. In the second step, we
combined the spectral method and the fine-tuning method described by
Newman (2006) to further optimize modularity. Considering that the
modularity function Q, generated by combining the spectral method and
the fine-tuning method, is degenerate (Good et al., 2010), we computed
a distribution of Q values and a distribution of partitions by permuting
the order of nodes in the adjacency matrix before feeding it into the
optimization algorithm in the second step. Only the solution consistent
over this distribution was reported. The degeneracy of Q is �2k, where k
is the number of modules (Good et al., 2010). Since three modules were
found in the first step, �2k (20) repetitions were made to form the
distribution of Q values and partitions. All analyses in the second step
were performed using Brain Connectivity Toolbox (BCT) (Rubinov and
Sporns, 2010). After partitioning, components belonging to the same
module were displayed in the same colors in the figures.

Clustering coefficient and shortest path length. The averaged local clus-
tering coefficient was calculated as

C �
1

m �
j � 1

m
2Ej

Vj�Vj � 1�
,

where Ej is the number of edges connecting neighbors of vertex j and Vj is
the number of neighbors of vertex j. Pure random networks with same
numbers of nodes and edges were constructed based on the Erdős–Rényi
model with 100 repetitions. Random networks with the same distribu-
tion of degrees as the current rat-brain network were constructed using
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BCT with 100 repetitions. The averaged minimum path length was cal-
culated as

L �
2

m � �m � 1��
j � 1

m�1 �
k � j	1

m

min_path� j, k�,

where min_path is the shortest path length between vertices j and k.
Reproducibility of intercomponent direct connectivity. To estimate the

reliability of intercomponent connectivity across animals, we randomly
divided data from all animals into two subgroups. The strength of inter-
component connectivity (defined as the amplitude of partial correlation
coefficient between two components) between the two subgroups was
quantitatively compared using the correlation of intercomponent con-
nectional strength between the two subgroups. This procedure was re-
peated 100 times and the correlation value averaged across 100
repetitions was reported.

Results
Elementary clusters of RSFC revealed by group ICA
Group ICA results were obtained from 16 conscious rats. Most
components identified were located in specific anatomical re-
gions as displayed in Figure 1. Figure 1a shows a component
located at anatomically well defined bilateral caudate–putamen
(CPu). Figure 1, b–e, represents functional structures of bilateral
hypothalamus, thalamus, hippocampus, and somatosensory cor-
tex, respectively. In addition, functionally related regions also
tended to cluster into single components. Figure 1f shows a com-
ponent that includes bilateral prefrontal cortex (PFC) and ante-
rior olfactory nucleus (AON), showing well known reciprocal
functional connections of the olfactory bulbs and other olfactory-
related areas with the prefrontal cortex in conscious rats (Cinelli
et al., 1987). Another olfactory-related component was located at
olfactory tubercle (OT) (Fig. 1g). Figure 1h shows a complex
component composed of anterior cingulate cortex (ACC), pre-
limbic, and infralimbic cortices, together considered as extended
areas of PFC in the rat.

Figure 2 shows 38 ICA components (excluding two artifactual
components) overlaid on anatomical images, revealing the global
clustering pattern of RSFC in the rat brain. Bilateral components
were dominant of all ICA components identified (24 of 38). In
cortical regions, bilateral components (13 in total) were also
dominant. The numbers of left and right cortical components

were approximately equal (five for left lateral components and six
for right components).

Direct connectivity between RSFC clusters calculated by
partial correlation
To evaluate intercomponent connectional relationships, we cal-
culated the direct connectivity between individual components
by using partial correlation analysis. The partial correlation coef-
ficient matrix of 40 components averaged across all animals is
displayed in Figure 3a. Statistical comparison at the group level
revealed the pattern of direct connections between different
RSFC clusters (one-sample t test, p � 0.01). To estimate the
reliability of intercomponent connectivity across animals, we
randomly divided data from all animals into two subgroups.
There was a high correlation of intercomponent connectional
strength between the two subgroups (r � 0.71, p � 10�6) (Fig.
3b), suggesting great reproducibility in direct connectivity be-
tween RSFC clusters. This result did not change when we re-
peated the same process 100 times (averaged correlation
coefficient of 100 repetitions, ravg � 0.68).

Graph theory-based analysis of the rat brain networks
The graph demonstration of significant direct connections be-
tween ICA components is shown in Figure 4a. The total edge
number was 78, yielding the connection density of 5.55%. The
spectral partitioning algorithm, based on the leading eigenvector
(Newman, 2006), was applied to this graph (the first step of par-
titioning; see Materials and Methods) and revealed that the rat
whole-brain network was segregated into three modules to
achieve maximum modularity (Q � 0.414) (Fig. 4). This modu-
larity value was significantly higher than both random networks
with same nodes and edges and random networks with same
degree distribution ( p � 0.01 for both types of random net-
works), suggesting a prominent modular structure of intrinsic
connectional architecture of the rat brain. Of the three modules,
module 1 was dominated by cortical regions, including the dorsal
olfactory bulb, motor cortex, somatosensory cortex, insular cor-
tex, and visual cortex (Fig. 4b), indicating strong, direct commu-
nications across the cortical ribbon in the rat (Zhang et al., 2010).
Module 2 included the olfactory system, PFC, ACC, CPu, poste-

Figure 1. Spatial maps of individual components identified by ICA. a– h, Examples of ICA components. Left columns are atlas images. Anatomic regions corresponding to individual ICA
components are annotated. Middle columns are individual ICA components overlaid on anatomical images in the coronal view. Distances to bregma (in millimeters) are labeled at the bottom of each
image. Right columns are individual ICA components overlaid on anatomical images in the transversal view. SS, somatosensory cortex; PL, prelimbic cortex; ILA, infralimbic cortex.
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rior somatosensory cortex, thalamus, hypothalamus, hippocam-
pus, and auditory cortex. This module highlighted the integration
of sensory input, cognitive processing, and output (Paxinos, 2004).
Module 3 consisted of the PFC, insular cortex, amygdala, hypothal-
amus, and auditory cortex. This module might be related to emotion
and autonomic regulation in the conscious rat (Paxinos, 2004).

To further maximize the final value of modularity, fine-
tuning stages, as described by Newman’s (2006) spectral parti-
tioning analysis, were included in the second step of the
partitioning procedure. Considering that the modularity func-
tion Q is degenerate and leads to multiple solutions of graph
partitioning (Good et al., 2010), we computed the distribution of
Q values and partitions. The distribution of Q values ranged from

0.392 to 0.429 with a mean value of 0.416,
which only slightly improved the Q value
of 0.414 obtained in the first step. In all
repetitions, the majority yielded four
modules (12 of 20 repetitions). The major
pattern of partitioning showed very high
stability. Consistent with the partitioning
result from the first step, two modules,
identical to the green and yellow modules
(Fig. 4), were highly consistent in all 20
partitions with minimal variation. The
yellow module was found in all repetitions
and the green module was found in 19 of
20 repetitions. However, the red module
was less stable and tended to be further
divided into two submodules (Fig. 5). The
first submodule was found in 14 of 20 rep-
etitions and the second submodule was

found in 13 or 20 repetitions. This reduced stability of the cortical
module might indicate higher complexity of cortical network
organization.

Furthermore, the connectional architecture of the rat brain
showed typical features of small-worldness, characterized by high
clustering coefficient and short minimum path length. When
compared to pure random networks with the same numbers of
nodes and edges, the ratio of clustering coefficient (C/Crandom) is
1.7 and the ratio of minimum path length (L/Lrandom) is 1.08,
indicating a higher level of clustering than and a similar mini-
mum path length to pure randomized networks. The ratios of
these two metrics, compared with a random network with the

Figure 3. Intercomponent connectional relationships. a, The partial correlation coefficient matrix averaged across all rats.
Partial correlation coefficients (r values) were first transformed to z scores and then averaged across all runs and across all animals.
The final partial correlation matrix was generated by transforming the averaged z scores back to the r values. All diagonal values
were set to zero. b, Correlation of direct connectional strength (r values) between two randomly divided subgroups. The high
correlation coefficient (0.71) suggests that intercomponent connections across animals are highly reproducible.

Figure 2. The spatial pattern of 38 group ICA components (excluding two artifactual components). Individual components are displayed with distinct colors. Distance to bregma (in millimeters)
for each imaging slice is labeled at the bottom of each image.
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same distribution of degrees, showed similar results, C/Crandom �
1.5 and L/Lrandom � 1.02. These comparisons collectively suggest
that the rat brain is a small-world network (Watts and Strogatz,
1998).

Discussion
In this study, RSFC in awake rats was decomposed into 40 spatial
components using group ICA. The direct connectional relation-
ships between these components were evaluated using partial
correlation, revealing a complex network linking different re-
gions across the whole brain. This brain network was character-
ized by the features of small worldness with a large modularity, a
large clustering coefficient, and a small shortest path length. Fur-
thermore, using a graph-theory approach, the whole-brain net-
work was segregated into community structures.

To our knowledge, this is the first study using group ICA to
study RSFC in awake rats. ICA is well established in rsfMRI for
decomposing functional clusters in the human brain. However,
its application in the rat is rather limited. There is currently only
one study that used ICA to analyze RSFC of individual, anesthe-
tized rat without group analysis (Hutchison et al., 2010). Lack of
such effort has significantly limited the applicability of rsfMRI,

particularly in animal models. In the present study, images of all
individual rats were aligned to a standard rat atlas, and thus al-
lowed the group results to be obtained using group ICA. In addi-
tion, the awake condition avoided confounding effects of
anesthesia. We found that the majority of components identified
were located in anatomically well defined regions, indicating a
convergence between anatomical parcellation and functional sys-
tems. Some components, such as bilateral somatosensory, motor,
visual, and auditory cortices, are consistent with the literature
(Peltier et al., 2005; Lu et al., 2007; Liu et al., 2010). Spatial maps
of subcortical regions, including CPu, thalamus, hypothalamus,
and hippocampu,s also well agree with ICA results in individual
anesthetized rats (Hutchison et al., 2010), suggesting highly re-
producible patterns of cortical and subcortical clustering across
individuals. However, we also observed several less reported yet
important clusters. For instance, there were components related
to olfactory and executive functions. Olfaction is considered one
of the most important sensory inputs in the rodent. Prominent
components of olfactory bulb, AON and OT indicated functional
significance of olfaction in awake rats. Moreover, PFC and AON
were clustered into a single component, suggesting a close asso-

Figure 4. Segregation of the whole-brain network of the awake rat brain. a, The global functional network constructed based on significant intercomponent connections. Each colored box
represents an ICA component labeled with its corresponding anatomy and the ICA number. Each line represents a significant connection between two components. Nodes within the same module
are displayed in the same color (red, green, and yellow). Three modules were obtained by the spectral partitioning algorithm. B, Bilateral; L, left; R, right; AMG, amygdala; INS, insula; NAcc, nucleus
accumbens; MO, motor cortex; HC, hippocampus; HY, hypothalamus; OB, olfactory bulb; Pir, piriform cortex; PTL, parietal cortex; S, septum; TE, temporal cortex; TH, thalamus; VIS, visual cortex. b– d,
Community structures of the whole-brain network revealed by spectral partitioning. b, The first module is dominated by cortical ribbon. c, The second module is highlighted by the olfactory pathway
and its interaction with PFC, and the integration of other sensory input, cognitive processing, and output in cortical and subcortical regions like thalamus and hippocampus. d, The third module
includes regions important for emotional and autonomic functions such as amygdala, insular cortex, PFC, and hypothalamus. The same colors are used in b, c, and d as those in a. Distance to bregma
(in millimeters) is labeled at the bottom of each image.
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ciation between olfactory and executive functions (Cinelli et al.,
1987; Smith et al., 2010).

To further evaluate intercomponent connectional relation-
ships, we applied partial correlation analysis on time courses of
individual ICA components. Partial correlation analysis is an ap-
proach for estimating direct statistical association by controlling
correlation mediated by other components. This analysis method
essentially eliminated a large portion of connections that were
mediated by other nodes, leaving only direct connections. A re-
cent study evaluating various network modeling methods indi-
cated that partial correlation performed very well in revealing
network connections (Smith et al., 2010). In addition, this anal-
ysis could reveal possible long-distance functional integration.
Significant amounts of direct connection identified in the present
study are consistent with anatomical connections in the rat. For
instance, the direct connection between thalamus and hippocam-
pus observed in the present study has been well documented in
the literature using various techniques (Wouterlood et al., 1990;
Dolleman-Van Der Weel and Witter, 1996). These two regions
and their bidirectional connections are critical components of the
anatomical system subserving spatial memory (Henry et al.,
2004). In addition, connections from the PFC to cingulate cortex
and nucleus accumbens, as shown in our data, have been impli-
cated in emotional processing (Hajós et al., 1998). We also ob-
served that thalamus bridges hippocampus and ACC. In
accordance with this result, it was found that nucleus reuniens of
the midline thalamus might serve as the link sending projection
to the hippocampus from the medial PFC, such as ACC (Vertes et
al., 2007).

With the global functional network constructed based on in-
tercomponent connections (Fig. 4a), the first question to con-
sider is whether the rat brain exhibits the same network
characteristics reported in humans, such as small-worldness. Hu-
man studies have indicated robust small-world characteristics in
both structural and functional connectivity networks. A small-
world network is described as a high clustering coefficient and
low minimum path length compared with random networks.
Small-world networks allow high efficiency of information flow
at a low wiring cost for both local (with a high clustering coeffi-
cient) and long distance (with a low minimum path length). Al-
though small-worldness represents a crucial feature of brain
organization in the human, there is a paucity of information
regarding small-world networks in nonhuman subjects. Previous
studies reported similar small-worldness of anatomical networks
in the macaque visual cortex and cat whole cortex (Hilgetag et al.,
2000). However, no study specifically addressed this question
using functional connectivity in conscious rats. Our network
metrics showed that, in the rat brain, the whole-brain network is
considerably more cliquish than random networks, while retain-
ing approximately the same minimum path length. These results
are quantitatively comparable to the human brain and suggest
that small-worldness is conserved in the rat functional networks.

In addition to the small-world features, high modularity is
also thought to be an important governing principle in brain
networks. Several studies consistently report that the resting-
state brain network in humans exhibited robust community
structure (He et al., 2009; Meunier et al., 2009). High modularity
values of the rat whole-brain network obtained in our study in-

Figure 5. Community structures dominant in 20 repetitions of the spectral partitioning method combined with the fine-tuning method. Distance to bregma (in millimeters) is labeled at the
bottom of each image. The yellow (c) and green (d) modules are almost identical to those shown in Figure 4, whereas the module of cortical regions is further divided into two submodules (a, b).
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dicate a robust community structure of the global network in the
awake rat brain at the resting state. This result indicated that the
rat brain shares basic topological characteristics with the human
brain.

Using Newman’s (2006) spectral partitioning method, the rat
whole-brain network was segregated into three modules. The first
module predominantly extended across the cortical ribbon, indi-
cating a strong intercortical communication across the cortex
(Zhang et al., 2010). The second module highlighted the olfactory
pathway and its interaction with PFC, and the integration of
other sensory input, cognitive processing, and output in cortical
and subcortical regions. Regions in the third module, including
PFC, insular cortex, hypothalamus, and amygdala, are all key
components subserving emotional and autonomic regulations
(Paxinos, 2004). Interestingly, using pharmacological MRI,
Schwarz and colleagues (2009) reported very similar results with
a module dominated by cortical regions and a second module
dominated primarily with subcortical regions. Consistent with
the intrinsic modular structure observed in the resting-state hu-
man brain, our rat results also showed long-distance interaction
within modules.

To address the issue of degeneracy of the modularity function,
distributions of Q values and community structures were ob-
tained. The result showed that two of the three modules previ-
ously identified (yellow and green) were highly consistent across
all repetitions with little variation, whereas the community struc-
ture of cortical regions was further divided into two submodules.
We speculate that the relatively lower stability of this module
might reflect higher complexity of the organization of cortical
networks.

The vertices in our graph are ICA components, as opposed to
individual voxels or anatomically defined ROIs used in most other
studies. The strategy of using ICA components to construct global
networks is based on functionally segregated elements of the brain.
Thus, we avoided anatomical restraint of ROI definitions. Recent
evidence suggests that different anatomical parcellation schemes
have significant influences on network topological properties (Wang
et al., 2009) and functionally inaccurate ROIs could severely damage
the network estimation (Smith et al., 2010). Therefore, our approach
might have significant advantages in constructing the whole-brain
network compared with anatomical ROI-based approaches. Rela-
tive to voxel-by-voxel approaches, our approach is more computa-
tionally efficient.

There are several methodological limitations of the present
study. First, an unweighted network was used in graph-theory
analysis. Future exploration on weighted networks should be in-
teresting. Second, although rats were fully awake during RSFC
scans, they were briefly anesthetized during setup. The effects of
brief anesthesia on later RSFC need further investigation. Third,
the ICA components number was arbitrary and other numbers
can be used. In addition, negative intercomponent partial corre-
lation coefficients (approximately half of all correlation coeffi-
cients) were not analyzed but can potentially contain important
information regarding neural networks. This information should
be taken into consideration in future studies. Furthermore, al-
though intercomponent connectivity showed high consistency in
the present study, individual variability particularly in topo-
graphical properties needs future examination.

Our understanding of the brain function has substantially
benefited from preclinical neurobiological investigation in ani-
mal models, primarily in rodents. The present study systemati-
cally investigated resting-state functional networks in the awake
rat brain. It provided a functional atlas of the intrinsic connec-

tional architecture of the rat brain at both intraregion and inter-
region levels. More investigations are still needed to further
characterize connectional architecture in the rat brain. For exam-
ple, it is unknown whether functional networks in rats are orga-
nized differently at different spatial scales, or whether significant
community structure exists within each module. It is also un-
known whether the rat brain has the default mode network found
in humans and primates (Raichle et al., 2001; Vincent et al.,
2007). Nevertheless, the current work revealed that the conscious
rat brain conserved topological properties like small-worldness
also observed in human. Combined with various invasive proce-
dures, pharmacological interventions, and genetic manipula-
tions, it will serve as a prelude to future applications of RSFC in
animal models.
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