18 research outputs found

    Deputy Secretary Kimmitt Speaks about Importance of International Investment Flows

    Get PDF

    Remarks by Deputy Secretary Robert M. Kimmitt at the Virginia Military Institute

    Get PDF

    Dep Sec Kimmitt Speaks in Davos on Current Financial Risks

    Get PDF

    IgA Nephropathy Genetic Risk Score to Estimate the Prevalence of IgA Nephropathy in UK Biobank

    Get PDF
    Background: IgA nephropathy (IgAN) is the commonest glomerulonephritis worldwide. Its prevalence is difficult to estimate, as people with mild disease do not commonly receive a biopsy diagnosis. We aimed to generate an IgA nephropathy genetic risk score (IgAN-GRS) and estimate the proportion of people with hematuria who had IgAN in the UK Biobank (UKBB). Methods: We calculated an IgAN-GRS using 14 single-nucleotide polymorphisms (SNPs) drawn from the largest European Genome-Wide Association Study (GWAS) and validated the IgAN-GRS in 464 biopsy-proven IgAN European cases from the UK Glomerulonephritis DNA Bank (UKGDB) and in 379,767 Europeans in the UKBB. We used the mean of IgAN-GRS to calculate the proportion of potential IgAN in 14,181 with hematuria and other nonspecific renal phenotypes from 379,767 Europeans in the UKBB. Results: The IgAN-GRS was higher in the IgAN cohort (4.30; 95% confidence interval [95% CI: 4.23-4.38) than in controls (3.98; 3.97-3.98; P < 0.0001). The mean GRS in UKBB participants with hematuria (n = 12,858) was higher (4.04; 4.02-4.06) than UKBB controls (3.98; 3.97-3.98; P < 0.0001) and higher in those with hematuria, hypertension, and microalbuminuria (n = 1323) (4.07; 4.02-4.13) versus (3.98; 3.97-3.98; P = 0.0003). Using the difference in these means, we estimated that IgAN accounted for 19% of noncancer hematuria and 28% with hematuria, hypertension, and microalbuminuria in UKBB. Conclusions: We used an IgAN-GRS to estimate the prevalence of IgAN contributing to common phenotypes that are not always biopsied. The noninvasive use of polygenic risk in this setting may have further utility to identify likely etiology of nonspecific renal phenotypes in large population cohorts.This article is freely available via Open Access. Click on the Publisher URL to access it via the publisher's site.This study was done with the UK Biobank resource (application 9072). UK Glomerulonephritis DNA Bank cohort. Piotr SƂowinski, was consulted on the means method and helped with the simulation estimates and calculation. KS is funded by an Nation Institute for Health and Research (NIHR) Academic Clinical Fellowship. SAS is supported by a Diabetes UK PhD studentship (17/0005757). RAO is supported by a Diabetes UK Harry Keen Fellowship (16/0005529) MNW is supported by the Wellcome Trust Institutional Support Fund (WT097835MF). The views expressed are those of the authors and not necessarily those of the National Health Service (NHS), the NIHR, or the Department of Healthpublished version, accepted version, submitted versio

    A single nucleotide polymorphism genetic risk score to aid diagnosis of coeliac disease: a pilot study in clinical care

    No full text
    Background: Single nucleotide polymorphism-based genetic risk scores (GRS) model genetic risk as a continuum and can discriminate coeliac disease but have not been validated in clinic. Human leukocyte antigen (HLA) DQ gene testing is available in clinic but does not include non-HLA attributed risk and is limited by discrete risk stratification. Aims: To accurately characterise both HLA and non-HLA coeliac disease genetic risk as a single nucleotide polymorphism-based GRS and evaluate diagnostic utility. Methods: We developed a 42 single nucleotide polymorphism coeliac disease GRS from a European case-control study (12 041 cases vs 12 228 controls) using HLA-DQ imputation and published genome-wide association studies. We validated the GRS in UK Biobank (1237 cases) and developed direct genotyping assays. We tested the coeliac disease GRS in a pilot clinical cohort of 128 children presenting with suspected coeliac disease. Results: The GRS was more discriminative of coeliac disease than HLA-DQ stratification in UK Biobank (receiver operating characteristic area under the curve [ROC-AUC] = 0.88 [95% CIs: 0.87-0.89] vs 0.82 [95% CIs: 0.80-0.83]). We demonstrated similar discrimination in the pilot clinical cohort (114 cases vs 40 controls, ROC-AUC = 0.84 [95% CIs: 0.76-0.91]). As a rule-out test, no children with coeliac disease in the clinical cohort had a GRS below 38th population centile. Conclusions: A single nucleotide polymorphism-based GRS may offer more effective and cost-efficient testing of coeliac disease genetic risk in comparison to HLA-DQ stratification. As a comparatively inexpensive test it could facilitate non-invasive coeliac disease diagnosis but needs detailed assessment in the context of other diagnostic tests and against current diagnostic algorithms.This article is freely available via Open Access. Click on the Publisher URL to access it via the publisher's site.Diabetes UK. Grant Numbers: 17/0005757, 16/0005529 University of Alberta Wellcome Trust. Grant Numbers: 084743, WT097835MF National Institute of Diabetes and Digestive and Kidney Diseases National Institute of Allergy and Infectious Diseases National Human Genome Research Institute National Institute of Child Health and Human Development Juvenile Diabetes Research Foundation International National Institutes of Health. Grant Number: U01‐DK062418published version, accepted version (12 month embargo), submitted versio
    corecore