3,243 research outputs found
Bremsstrahlung Radiation At a Vacuum Bubble Wall
When charged particles collide with a vacuum bubble, they can radiate strong
electromagnetic waves due to rapid deceleration. Owing to the energy loss of
the particles by this bremsstrahlung radiation, there is a non-negligible
damping pressure acting on the bubble wall even when thermal equilibrium is
maintained. In the non-relativistic region, this pressure is proportional to
the velocity of the wall and could have influenced the bubble dynamics in the
early universe.Comment: 6 pages, 2 figures, revtex, to appear in JKP
Optical Spectroscopy of Supernova Remnants in M81 and M82
We present spectroscopy of 28 SNR candidates as well as one H II region in
M81, and two SNR candidates in M82. Twenty six out of the M81 candidates turn
out to be genuine SNRs, and two in M82 may be shocked condensations in the
galactic outflow or SNRs. The distribution of [N II]/H{\alpha} ratios of M81
SNRs is bimodal. M81 SNRs are divided into two groups in the spectral line
ratio diagrams: an [O III]-strong group and an [O III]-weak group. The latter
have larger sizes, and may have faster shock velocity. [N II]/H{\alpha} ratios
of the SNRs show a strong correlation with [S II]/H{\alpha} ratios. They show a
clear radial gradient in [N II]/H{\alpha} and [S II]/H{\alpha} ratios: dLog ([N
II]/H{\alpha})/dLog R = -0.018 {\pm} 0.008 dex/kpc and dLog ([S
II]/H{\alpha})/dLog R = -0.016 {\pm} 0.008 dex/kpc where R is a deprojected
galactocentric distance. We estimate the nitrogen and oxygen abundance of the
SNRs from the comparison with shock-ionization models. We obtain a value for
the nitrogen radial gradient, dLog(N/H)/dLogR = -0.023 {\pm} 0.009 dex/kpc, and
little evidence for the gradient in oxygen. This nitrogen abundance shows a few
times flatter gradient than those of the planetary nebulae and H II regions. We
find that five SNRs are matched with X-ray sources. Their X-ray hardness colors
are consistent with thermal SNRs.Comment: 19 pages, 24 figures, 5 tables, ApJ accepte
Controlled release of human growth hormone fused with a human hybrid Fc fragment through a nanoporous polymer membrane
Nanotechnology has been applied to the development of more effective and compatible drug delivery systems for therapeutic proteins. Human growth hormone (hGH) was fused with a hybrid Fc fragment containing partial Fc domains of human IgD and IgG(4) to produce a long-acting fusion protein. The fusion protein, hGH-hyFc, resulted in the increase of the hydrodynamic diameter (ca. 11 nm) compared with the diameter (ca. 5 nm) of the recombinant hGH. A diblock copolymer membrane with nanopores (average diameter of 14.3 nm) exhibited a constant release rate of hGH-hyFc. The hGH-hyFc protein released in a controlled manner for one month was found to trigger the phosphorylation of Janus kinase 2 (JAK2) in human B lymphocyte and to exhibit an almost identical circular dichroism spectrum to that of the original hGH-hyFc, suggesting that the released fusion protein should maintain the functional and structural integrity of hGH. Thus, the nanoporous release device could be a potential delivery system for the long-term controlled release of therapeutic proteins fused with the hybrid Fc fragment.X111313sciescopu
Mesenchymal Stem Cells Improve Wound Healing In Vivo via Early Activation of Matrix Metalloproteinase-9 and Vascular Endothelial Growth Factor
We investigated the effects of mesenchymal stem cells (MSCs) on wound healing using a three-dimensional (3D) collagen gel scaffold. Three circular full-thickness skin defects were created on the back of Sprague-Dawley rats. One site was covered with a 3D collagen gel containing 2 Ć 106 MSCs (MSCs+/3D collagen+). Another site was replaced with a 3D collagen gel without MSCs and the third site was left empty. The wound size was significantly reduced in the MSCs+/3D collagen+ sites. MSCs+/3D collagen+ sites exhibited the most neovascularization. FISH showed that Y-chromosome possessing cells were found within the dermis of MSCs+/3D collagen+ sites. Gelatin zymography revealed that the most intense expression of MMP-9 was detected early in the MSCs+/3D collagen+ sites. Our results indicate that MSCs upregulate the early expression of MMP-9 which induces the early mobilization of VEGF. Thus, MSCs appear to accelerate significantly wound healing via early activation of MMP-9 and VEGF
- ā¦