12 research outputs found

    Modulation of gut microbiota and delayed immunosenescence as a result of syringaresinol consumption in middle-aged mice

    Get PDF
    Age-associated immunological dysfunction (immunosenescence) is closely linked to perturbation of the gut microbiota. Here, we investigated whether syringaresinol (SYR), a polyphenolic lignan, modulates immune aging and the gut microbiota associated with this effect in middle-aged mice. Compared with age-matched control mice, SYR treatment delayed immunosenescence by enhancing the numbers of total CD3+ T cells and naïve T cells. SYR treatment induced the expression of Bim as well as activation of FOXO3 in Foxp3+ regulatory T cells (Tregs). Furthermore, SYR treatment significantly enhanced the Firmicutes/Bacteroidetes ratio compared with that in age-matched controls by increasing beneficial bacteria, Lactobacillus and Bifidobacterium, while reducing the opportunistic pathogenic genus, Akkermansia. In addition, SYR treatment reduced the serum level of lipopolysaccharide-binding protein, an inflammatory marker, and enhanced humoral immunity against influenza vaccination to the level of young control mice. Taken together, these findings suggest that SYR may rejuvenate the immune system through modulation of gut integrity and microbiota diversity as well as composition in middle-aged mice, which may delay the immunosenescence associated with aging. © 2016 The Author(s)1761sciescopu

    Intense Pulsed Light Attenuates UV-Induced Hyperimmune Response and Pigmentation in Human Skin Cells

    No full text
    The skin of an organism is affected by various environmental factors and fights against aging stress via mechanical and biochemical responses. Photoaging induced by ultraviolet B (UVB) irradiation is common and is the most vital factor in the senescence phenotype of skin, and so, suppression of UVB stress-induced damage is critical. To lessen the UVB-induced hyperimmune response and hyperpigmentation, we investigated the ameliorative effects of intense pulsed light (IPL) treatment on the photoaged phenotype of skin cells. Normal human epidermal keratinocytes and human epidermal melanocytes were exposed to 20 mJ/cm2 of UVB. After UVB irradiation, the cells were treated with green (525–530 nm) and yellow (585–592 nm) IPL at various time points prior to the harvest step. Subsequently, various signs of excessive immune response, including expression of proinflammatory and melanogenic genes and proteins, cellular oxidative stress level, and antioxidative enzyme activity, were examined. We found that IPL treatment reduced excessive cutaneous immune reactions by suppressing UVB-induced proinflammatory cytokine expression. IPL treatment prevented hyperpigmentation, and combined treatment with green and yellow IPL synergistically attenuated both processes. IPL treatment may exert protective effects against UVB injury in skin cells by attenuating inflammatory cytokine and melanogenic gene overexpression, possibly by reducing intracellular oxidative stress. IPL treatment also preserves antioxidative enzyme activity under UVB irradiation. This study suggests that IPL treatment is a useful strategy against photoaging, and provides evidence supporting clinical approaches with non-invasive light therapy

    Tyrosinase-Targeting Gallacetophenone Inhibits Melanogenesis in Melanocytes and Human Skin- Equivalents

    No full text
    Demands for safe depigmentation compounds are constantly increasing in the pharmaceutical and cosmetic industry, since the numerous relevant compounds reported to date have shown undesirable side effects or low anti-melanogenic effects. In this study, we reported three novel inhibitors of tyrosinase, which is the key enzyme in melanogenesis, identified using docking-based high throughput virtual screening of an in-house natural compound library followed by mushroom tyrosinase inhibition assay. Of the three compounds, gallacetophenone showed high anti-melanogenic effect in both human epidermal melanocytes and a 3D human skin model, MelanoDerm. The inhibitory effect of gallacetophenone on tyrosinase was elucidated by computational molecular modeling at the atomic level. Binding of gallacetophenone to the active site of tyrosinase was found to be stabilized by hydrophobic interactions with His367, Ile368, and Val377; hydrogen bonding with Ser380 and a water molecule bridging the copper ions. Thus, our results strongly suggested gallacetophenone as an anti-melanogenic ingredient that inhibits tyrosinase

    AKT-targeted anti-inflammatory activity of Panax ginseng calyx ethanolic extract

    No full text
    Background: Korean ginseng (Panax ginseng) plays an anti-inflammatory role in a variety of inflammatory diseases such as gastritis, hepatitis, and colitis. However, inflammation-regulatory activity of the calyx of the P. ginseng berry has not been thoroughly evaluated. To understand whether the calyx portion of the P. ginseng berry is able to ameliorate inflammatory processes, an ethanolic extract of P. ginseng berry calyx (Pg-C-EE) was prepared, and lipopolysaccharide-activated macrophages and HEK293 cells transfected with inflammation-regulatory proteins were used to test the anti-inflammatory action of Pg-C-EE. Methods: The ginsenoside contents of Pg-C-EE were analyzed by HPLC. Suppressive activity of Pg-C-EE on NO production, inflammatory gene expression, transcriptional activation, and inflammation signaling events were examined using the Griess assay, reverse transcription-polymerization chain reaction, luciferase activity reporter gene assay, and immunoblotting analysis. Results: Pg-C-EE reduced NO production and diminished mRNA expression of inflammatory genes such as cyclooxygenase-2, inducible NO synthase, and tumor necrosis factor-α in a dose-dependent manner. This extract suppressed luciferase activity induced only by nuclear factor-ÎșB. Interestingly, immunoblotting analysis results demonstrated that Pg-C-EE reduced the activities of protein kinase B (AKT)1 and AKT2. Conclusion: These results suggest that Pg-C-EE may have nuclear-factor-ÎșB-targeted anti-inflammatory properties through suppression of AKT. The calyx of the P. ginseng berry is an underused part of the ginseng plant, and development of calyx-derived extracts may be useful for treatment of inflammatory diseases. Keywords: AKT, anti-inflammatory activity, calyx of berry, nuclear factor-ÎșB, Panax ginsen

    Efficacy and safety of Panax ginseng berry extract on glycemic control: A 12-wk randomized, double-blind, and placebo-controlled clinical trial

    No full text
    Background: Antihyperglycemic effects of Panax ginseng berry have never been explored in humans. The aims of this study were to assess the efficacy and safety of a 12-wk treatment with ginseng berry extract in participants with a fasting glucose level between 100 mg/dL and 140 mg/dL. Methods: This study was a 12-wk, randomized, double-blind, placebo-controlled clinical trial. A total of 72 participants were randomly allocated to two groups of either ginseng berry extract or placebo, and 63 participants completed the study. The parameters related to glucose metabolism were assessed. Results: Although the present study failed to show significant antihyperglycemic effects of ginseng berry extract on the parameters related to blood glucose and lipid metabolism in the total study population, it demonstrated that ginseng berry extract could significantly decrease serum concentration of fasting glucose by 3.7% (p = 0.035), postprandial glucose at 60 min during 75 g oral glucose tolerance test by 10.7% (p = 0.006), and the area under the curve for glucose by 7.7% (p = 0.024) in those with fasting glucose level of 110 mg/dL or higher, while the placebo group did not exhibit a statistically significant decrease. Safety profiles were not different between the two groups. Conclusion: The present study suggests that ginseng berry extract has the potential to improve glucose metabolism in human, especially in those with fasting glucose level of 110 mg/dL or higher. For a more meaningful benefit, further research in people with higher blood glucose levels is required

    Antimelanogenesis and skin-protective activities of Panax ginseng calyx ethanol extract

    No full text
    Background: The antioxidant effects of Panax ginseng have been reported in several articles; however, little is known about the antimelanogenesis effect, skin-protective effect, and cellular mechanism of Panax ginseng, especially of P. ginseng calyx. To understand how an ethanol extract of P. ginseng berry calyx (Pg-C-EE) exerts skin-protective effects, we studied its activities in activated melanocytes and reactive oxygen species (ROS)–induced keratinocytes. Methods: To confirm the antimelanogenesis effect of Pg-C-EE, we analyzed melanin synthesis and secretion and messenger RNA and protein expression levels of related genes. Ultraviolet B (UVB) and hydrogen peroxide (H2O2) were used to induce cell damage by ROS generation. To examine whether this damage is inhibited by Pg-C-EE, we performed cell viability assays and gene expression and transcriptional activation analyses. Results: Pg-C-EE inhibited melanin synthesis and secretion by blocking activator protein 1 regulatory enzymes such as p38, extracellular signal-regulated kinases (ERKs), and cyclic adenosine monophosphate response element–binding protein. Pg-C-EE also suppressed ROS generation induced by H2O2 and UVB. Treatment with Pg-C-EE decreased the expression of matrix metalloproteinases, mitogen-activated protein kinases, and hyaluronidases and increased the cell survival rate. Conclusion: These results suggest that Pg-C-EE may have antimelanogenesis properties and skin-protective properties through regulation of activator protein 1 and cyclic adenosine monophosphate response element–binding protein signaling. Pg-C-EE may be used as a skin-improving agent, with moisture retention and whitening effects. Keywords: Antimelanogenesis, Calyx of berry, Matrix metalloproteinases, Panax ginseng, Skin protectiv
    corecore