106 research outputs found

    The hypocretin/orexin antagonist almorexant promotes sleep without impairment of performance in rats.

    Get PDF
    The hypocretin receptor (HcrtR) antagonist almorexant (ALM) has potent hypnotic actions but little is known about neurocognitive performance in the presence of ALM. HcrtR antagonists are hypothesized to induce sleep by disfacilitation of wake-promoting systems whereas GABAA receptor modulators such as zolpidem (ZOL) induce sleep through general inhibition of neural activity. To test the hypothesis that less functional impairment results from HcrtR antagonist-induced sleep, we evaluated the performance of rats in the Morris Water Maze in the presence of ALM vs. ZOL. Performance in spatial reference memory (SRM) and spatial working memory (SWM) tasks were assessed during the dark period after equipotent sleep-promoting doses (100 mg/kg, po) following undisturbed and sleep deprivation (SD) conditions. ALM-treated rats were indistinguishable from vehicle (VEH)-treated rats for all SRM performance measures (distance traveled, latency to enter, time within, and number of entries into, the target quadrant) after both the undisturbed and 6 h SD conditions. In contrast, rats administered ZOL showed impairments in all parameters measured compared to VEH or ALM in the undisturbed conditions. Following SD, ZOL-treated rats also showed impairments in all measures. ALM-treated rats were similar to VEH-treated rats for all SWM measures (velocity, time to locate the platform and success rate at finding the platform within 60 s) after both the undisturbed and SD conditions. In contrast, ZOL-treated rats showed impairments in velocity and in the time to locate the platform. Importantly, ZOL rats only completed the task 23-50% of the time while ALM and VEH rats completed the task 79-100% of the time. Thus, following equipotent sleep-promoting doses, ZOL impaired rats in both memory tasks while ALM rats performed at levels comparable to VEH rats. These results are consistent with the hypothesis that less impairment results from HcrtR antagonism than from GABAA-induced inhibition

    Acute optogenetic silencing of orexin/hypocretin neurons induces slow wave sleep in mice

    Get PDF
    Orexin/hypocretin neurons have a crucial role in the regulation of sleep and wakefulness. To help determine how these neurons promote wakefulness, we generated transgenic mice in which orexin neurons expressed halorhodopsin (orexin/Halo mice), an orange light-activated neuronal silencer. Slice patch-clamp recordings of orexin neurons that expressed halorhodopsin demonstrated that orange light photic illumination immediately hyperpolarized membrane potential and inhibited orexin neuron discharge in proportion to illumination intensity. Acute silencing of orexin neurons in vivo during the day (the inactive period) induced synchronization of the electroencephalogram and a reduction in amplitude of the electromyogram that is characteristic of slow-wave sleep (SWS). In contrast, orexin neuron photoinhibition was ineffective during the night (active period). Acute photoinhibition of orexin neurons during the day in orexin/Halo mice also reduced discharge of neurons in an orexin terminal field, the dorsal raphe (DR) nucleus. However, serotonergic DR neurons exhibited normal discharge rates in mice lacking orexin neurons. Thus, although usually highly dependent on orexin neuronal activity, serotonergic DR neuronal activity can be regulated appropriately in the chronic absence of orexin input. Together, these results demonstrate that acute inhibition of orexin neurons results in time-of-day-dependent induction of SWS and in reduced firing rate of neurons in an efferent projection site thought to be involved in arousal state regulation. The results presented here advance our understanding of the role of orexin neurons in the regulation of sleep/wakefulness and may be relevant to the mechanisms that underlie symptom progression in narcolepsy.National Institutes of Health (U.S.) (Grant R01NS057464

    Cortical nNOS neurons co-express the NK1 receptor and are depolarized by Substance P in multiple mammalian species

    Get PDF
    We have previously demonstrated that Type I neuronal nitric oxide synthase (nNOS)-expressing neurons are sleep-active in the cortex of mice, rats, and hamsters. These neurons are known to be GABAergic, to express Neuropeptide Y (NPY) and, in rats, to co-express the Substance P (SP) receptor NK1, suggesting a possible role for SP in sleep/wake regulation. To evaluate the degree of co-expression of nNOS and NK1 in the cortex among mammals, we used double immunofluorescence for nNOS and NK1 and determined the anatomical distribution in mouse, rat, and squirrel monkey cortex. Type I nNOS neurons co-expressed NK1 in all three species although the anatomical distribution within the cortex was species-specific. We then performed in vitro patch clamp recordings in cortical neurons in mouse and rat slices using the SP conjugate tetramethylrhodamine-SP (TMR-SP) to identify NK1-expressing cells and evaluated the effects of SP on these neurons. Bath application of SP (0.03โ€“1 ฮผM) resulted in a sustained increase in firing rate of these neurons; depolarization persisted in the presence of tetrodotoxin. These results suggest a conserved role for SP in the regulation of cortical sleep-active neurons in mammals

    Enablers and Barriers to Deployment of Smartphone-Based Home Vision Monitoring in Clinical Practice Settings

    Get PDF
    Importance: Telemedicine is accelerating the remote detection and monitoring of medical conditions, such as vision-threatening diseases. Meaningful deployment of smartphone apps for home vision monitoring should consider the barriers to patient uptake and engagement and address issues around digital exclusion in vulnerable patient populations. Objective: To quantify the associations between patient characteristics and clinical measures with vision monitoring app uptake and engagement. Design, Setting, and Participants: In this cohort and survey study, consecutive adult patients attending Moorfields Eye Hospital receiving intravitreal injections for retinal disease between May 2020 and February 2021 were included. Exposures: Patients were offered the Home Vision Monitor (HVM) smartphone app to self-test their vision. A patient survey was conducted to capture their experience. App data, demographic characteristics, survey results, and clinical data from the electronic health record were analyzed via regression and machine learning. Main Outcomes and Measures: Associations of patient uptake, compliance, and use rate measured in odds ratios (ORs). Results: Of 417 included patients, 236 (56.6%) were female, and the mean (SD) age was 72.8 (12.8) years. A total of 258 patients (61.9%) were active users. Uptake was negatively associated with age (OR, 0.98; 95% CI, 0.97-0.998; Pโ€‰=โ€‰.02) and positively associated with both visual acuity in the better-seeing eye (OR, 1.02; 95% CI, 1.00-1.03; Pโ€‰=โ€‰.01) and baseline number of intravitreal injections (OR, 1.01; 95% CI, 1.00-1.02; Pโ€‰=โ€‰.02). Of 258 active patients, 166 (64.3%) fulfilled the definition of compliance. Compliance was associated with patients diagnosed with neovascular age-related macular degeneration (OR, 1.94; 95% CI, 1.07-3.53; Pโ€‰=โ€‰.002), White British ethnicity (OR, 1.69; 95% CI, 0.96-3.01; Pโ€‰=โ€‰.02), and visual acuity in the better-seeing eye at baseline (OR, 1.02; 95% CI, 1.01-1.04; Pโ€‰=โ€‰.04). Use rate was higher with increasing levels of comfort with use of modern technologies (ฮฒโ€‰=โ€‰0.031; 95% CI, 0.007-0.055; Pโ€‰=โ€‰.02). A total of 119 patients (98.4%) found the app either easy or very easy to use, while 96 (82.1%) experienced increased reassurance from using the app. Conclusions and Relevance: This evaluation of home vision monitoring for patients with common vision-threatening disease within a clinical practice setting revealed demographic, clinical, and patient-related factors associated with patient uptake and engagement. These insights inform targeted interventions to address risks of digital exclusion with smartphone-based medical devices

    Hypocretin/orexin and nociceptin/orphanin FQ coordinately regulate analgesia in a mouse model of stress-induced analgesia

    Get PDF
    ้‡‘ๆฒขๅคงๅญฆๅŒป่–ฌไฟๅฅ็ ”็ฉถๅŸŸๅŒปๅญฆ็ณปStress-induced analgesia (SIA) is a key component of the defensive behavioral "fight-or-flight" response. Although the neural substrates of SIA are incompletely understood, previous studies have implicated the hypocretin/orexin (Hcrt) and nociceptin/orphanin FQ (N/OFQ) peptidergic systems in the regulation of SIA. Using immunohistochemistry in brain tissue from wild-type mice, we identified N/OFQ-containing fibers forming synaptic contacts with Hcrt neurons at both the light and electron microscopic levels. Patch clamp recordings in GFP-tagged mouse Hcrt neurons revealed that N/OFQ hyperpolarized, decreased input resistance, and blocked the firing of action potentials in Hcrt neurons. N/OFQ postsynaptic effects were consistent with opening of a G protein-regulated inwardly rectifying K+ (GIRK) channel. N/OFQ also modulated presynaptic release of GABA and glutamate onto Hcrt neurons in mouse hypothalamic slices. Orexin/ataxin-3 mice, in which the Hcrt neurons degenerate, did not exhibit SIA, although analgesia was induced by i.c.v. administration of Hcrt-1. N/OFQ blocked SIA in wild-type mice, while coadministration of Hcrt-1 overcame N/OFQ inhibition of SIA. These results establish what is, to our knowledge, a novel interaction between the N/OFQ and Hcrt systems in which the corticotropin-releasing factor and N/OFQ systems coordinately modulate the Hcrt neurons to regulate SIA

    Dual Hypocretin Receptor Antagonism Is More Effective for Sleep Promotion than Antagonism of Either Receptor Alone

    Get PDF
    The hypocretin (orexin) system is involved in sleep/wake regulation, and antagonists of both hypocretin receptor type 1 (HCRTR1) and/or HCRTR2 are considered to be potential hypnotic medications. It is currently unclear whether blockade of either or both receptors is more effective for promoting sleep with minimal side effects. Accordingly, we compared the properties of selective HCRTR1 (SB-408124 and SB-334867) and HCRTR2 (EMPA) antagonists with that of the dual HCRTR1/R2 antagonist almorexant in the rat. All 4 antagonists bound to their respective receptors with high affinity and selectivity in vitro. Since in vivo pharmacokinetic experiments revealed poor brain penetration for SB-408124, SB-334867 was selected for subsequent in vivo studies. When injected in the mid-active phase, SB-334867 produced small increases in rapid-eye-movement (REM) and non-REM (NR) sleep. EMPA produced a significant increase in NR only at the highest dose studied. In contrast, almorexant decreased NR latency and increased both NR and REM proportionally throughout the subsequent 6 h without rebound wakefulness. The increased NR was due to a greater number of NR bouts; NR bout duration was unchanged. At the highest dose tested (100 mg/kg), almorexant fragmented sleep architecture by increasing the number of waking and REM bouts. No evidence of cataplexy was observed. HCRTR1 occupancy by almorexant declined 4โ€“6 h post-administration while HCRTR2 occupancy was still elevated after 12 h, revealing a complex relationship between occupancy of HCRT receptors and sleep promotion. We conclude that dual HCRTR1/R2 blockade is more effective in promoting sleep than blockade of either HCRTR alone. In contrast to GABA receptor agonists which induce sleep by generalized inhibition, HCRTR antagonists seem to facilitate sleep by reducing waking โ€œdriveโ€

    Creatine Fails to Augment the Benefits from Resistance Training in Patients with HIV Infection: A Randomized, Double-Blind, Placebo-Controlled Study

    Get PDF
    Progressive resistance exercise training (PRT) improves physical functioning in patients with HIV infection. Creatine supplementation can augment the benefits derived from training in athletes and improve muscle function in patients with muscle wasting. The objective of this study was to determine whether creatine supplementation augments the effects of PRT on muscle strength, energetics, and body composition in HIV-infected patients.This is a randomized, double blind, placebo-controlled, clinical research center-based, outpatient study in San Francisco. 40 HIV-positive men (20 creatine, 20 placebo) enrolled in a 14-week study. Subjects were randomly assigned to receive creatine monohydrate or placebo for 14 weeks. Treatment began with a loading dose of 20 g/day or an equivalent number of placebo capsules for 5 days, followed by maintenance dosing of 4.8 g/day or placebo. Beginning at week 2 and continuing to week 14, all subjects underwent thrice-weekly supervised resistance exercise while continuing on the assigned study medication (with repeated 6-week cycles of loading and maintenance). The main outcome measurements included muscle strength (one repetition maximum), energetics ((31)P magnetic resonance spectroscopy), composition and size (magnetic resonance imaging), as well as total body composition (dual-energy X-ray absorptiometry). Thirty-three subjects completed the study (17 creatine, 16 placebo). Strength increased in all 8 muscle groups studied following PRT, but this increase was not augmented by creatine supplementation (average increase 44 vs. 42%, difference 2%, 95% CI -9.5% to 13.9%) in creatine and placebo, respectively). There were no differences between groups in changes in muscle energetics. Thigh muscle cross-sectional area increased following resistance exercise, with no additive effect of creatine. Lean body mass (LBM) increased to a significantly greater extent with creatine. CONCLUSIONS / SIGNIFICANCE: Resistance exercise improved muscle size, strength and function in HIV-infected men. While creatine supplementation produced a greater increase in LBM, it did not augment the robust increase in strength derived from PRT.ClinicalTrials.gov NCT00484627
    • โ€ฆ
    corecore