21 research outputs found

    miRNAs and lncRNAs as Predictive Biomarkers of Response to FOLFOX Therapy in Colorectal Cancer

    Get PDF
    Chemotherapy is one of the options for cancer treatment. FOLFOX is one of the widely used chemotherapeutic regimens used to treat primarily colorectal cancer and other cancers as well. However, the emergence of chemo-resistance clones during cancer treatment has become a critical challenge in the clinical setting. It is crucial to identify the potential biomarkers and therapeutics targets which could lead to an improvement in the success rate of the proposed therapies. Since non-coding RNAs have been known to be important players in the cellular system, the interest in their functional roles has intensified. Non-coding RNAs (ncRNAs) as regulators at the post-transcriptional level could be very promising to provide insights in overcoming chemo-resistance to FOLFOX. Hence, this mini review attempts to summarize the potential of ncRNAs correlating with chemo-sensitivity/resistance to FOLFOX

    Experimental study of the morphine de-addiction properties of Delphinium denudatum Wall.

    Get PDF
    BACKGROUND: Our aim was to explore the de-addiction properties of Delphinium denudatum Wall. in morphine dependent rats. METHODS: Charles Foster male albino rats were made morphine dependent by injecting morphine sulphate in increasing doses twice a day for 7 days. The spontaneous withdrawal signs observed 12 h after the last dose were quantified by the 'counted' and 'checked' signs. The drug (alcoholic extract of Delphinium denudatum) was administered p.o. in different regimen: a) single dose (700 mg/kg) 10 h before the first dose of morphine, b) single dose (700 mg/kg) 10 h after the last dose of morphine, c) multiple doses (350 mg/kg) along with morphine twice a day for 7 days. RESULT: Administration of Delphinium denudatum extract caused significant reduction in the frequency of counted signs as well as the presence of checked signs of morphine withdrawal. The maximum reduction was observed in regimen 'b' followed by regimen 'c' and 'a'. CONCLUSION: Delphinium denudatum Wall. significantly reduces the aggregate scores for all parameters in morphine withdrawal syndrome by central action and thus may prove to be an alternative remedy in morphine de-addiction

    Merozoite surface protein 1 paralog is involved in the human erythrocyte invasion of a zoonotic malaria, Plasmodium knowlesi

    Get PDF
    The zoonotic malaria parasite Plasmodium knowlesi is an important public health concern in Southeast Asia. Invasion of host erythrocytes is essential for parasite growth, and thus, understanding the repertoire of parasite proteins that enable this process is vital for identifying vaccine candidates and how some species are able to cause zoonotic infection. Merozoite surface protein 1 (MSP1) is found in all malaria parasite species and is perhaps the most well-studied as a potential vaccine candidate. While MSP1 is encoded by a single gene in P. falciparum, all other human infective species (P. vivax, P. knowlesi, P. ovale, and P. malariae) additionally encode a divergent paralogue known as MSP1P, and little is known about its role or potential functional redundancy with MSP1. We, therefore, studied the function of P. knowlesi merozoite surface protein 1 paralog (PkMSP1P), using both recombinant protein and CRISPR-Cas9 genome editing. The recombinant 19-kDa C-terminus of PkMSP1P (PkMSP1P-19) was shown to bind specifically to human reticulocytes. However, immunoblotting data suggested that PkMSP1P-19-induced antibodies can recognize PkMSP1-19 and vice versa, confounding our ability to separate the properties of these two proteins. Targeted disruption of the pkmsp1p gene profoundly impacts parasite growth, demonstrating for the first time that PkMSP1P is important in in vitro growth of P. knowlesi and likely plays a distinct role from PkMSP1. Importantly, the MSP1P KO also enabled functional characterization of the PkMSP1P-19 antibodies, revealing clear immune cross-reactivity between the two paralogues, highlighting the vital importance of genetic studies in contextualizing recombinant protein studies

    Exosomes As Potential Biomarkers and Targeted Therapy in Colorectal Cancer: A Mini-Review

    No full text
    The number of colorectal cancer (CRC) cases have increased gradually year by year. In fact, CRC is one of the most widely diagnosed cancer in men and women today. This disease is usually diagnosed at a later stage of the development, and by then, the chance of survival has declined significantly. Even though substantial progress has been made in understanding the basic molecular mechanism of CRC, there is still a lack of understanding in using the available information for diagnosing CRC effectively. Liquid biopsies are minimally invasive and have become the epitome of a good screening source for stage-specific diagnosis, measuring drug response and severity of the disease. There are various circulating entities that can be found in biological fluids, and among them, exosomes, have been gaining considerable attention. Exosomes can be found in almost all biological fluids including serum, urine, saliva, and breast milk. Furthermore, exosomes carry valuable molecular information such as proteins and nucleic acids that directly reflects the source of the cells. Nevertheless, the inconsistent yield and isolation process and the difficulty in obtaining pure exosomes have become major obstacles that need to be addressed. The potential usage of exosomes as biomarkers have not been fully validated and explored yet. This review attempts to uncover the potential molecules that can be derived from CRC-exosomes as promising biomarkers or molecular targets for effective diagnosing of CRC

    Association of Lowering Low-Density Lipoprotein Cholesterol With Contemporary Lipid-Lowering Therapies and Risk of Diabetes Mellitus: A Systematic Review and Meta-Analysis

    No full text
    BackgroundThe relationship between lowering LDL (low-density lipoprotein) cholesterol with contemporary lipid-lowering therapies and incident diabetes mellitus (DM) remains uncertain.Methods and ResultsThirty-three randomized controlled trials (21 of statins, 12 of PCSK9 [proprotein convertase subtilisin/kexin type 9] inhibitors, and 0 of ezetimibe) were selected using Medline, Embase, and the Cochrane Central Register of Controlled Trials (inception through November 15, 2018). A total of 163 688 nondiabetic patients were randomly assigned to more intensive (83 123 patients) or less intensive (80 565 patients) lipid-lowering therapy. More intensive lipid-lowering therapy was defined as the more potent pharmacological strategy (PCSK9 inhibitors, higher intensity statins, or statins), whereas less intensive therapy corresponded to active control group or placebo/usual care of the trial. Metaregression and meta-analyses were conducted using a random-effects model. No significant association was noted between 1-mmol/L reduction in LDL cholesterol and incident DM for more intensive lipid-lowering therapy (risk ratio: 0.95; 95% CI, 0.87--1.04; P=0.30; R2=14%) or for statins or PCSK9 inhibitors. More intensive lipid-lowering therapy was associated with a higher risk of incident DM compared with less intensive therapy (risk ratio: 1.07; 95% CI, 1.03--1.11; P<0.001; I2=0%). These results were driven by higher risk of incident DM with statins (risk ratio: 1.10; 95% CI, 1.05--1.15; P<0.001; I2=0%), whereas PCSK9 inhibitors were not associated with incident DM (risk ratio: 1.00; 95% CI, 0.93--1.07; P=0.96; I2=0%; P=0.02 for interaction).ConclusionsAmong intensive lipid-lowering therapies, there was no independent association between reduction in LDL cholesterol and incident DM. The risk of incident DM was higher with statins, whereas PCSK9 inhibitors had no association with risk of incident DM
    corecore