34 research outputs found

    Multicenter evaluation of a lateral-flow device test for diagnosing invasive pulmonary aspergillosis in ICU patients

    Get PDF
    Introduction: The incidence of invasive pulmonary aspergillosis (IPA) in intensive care unit (ICU) patients is increasing, and early diagnosis of the disease and treatment with antifungal drugs is critical for patient survival. Serum biomarker tests for IPA typically give false-negative results in non-neutropenic patients, and galactomannan (GM) detection, the preferred diagnostic test for IPA using bronchoalveolar lavage (BAL), is often not readily available. Novel approaches to IPA detection in ICU patients are needed. In this multicenter study, we evaluated the performance of an Aspergillus lateral-flow device (LFD) test for BAL IPA detection in critically ill patients. Methods: A total of 149 BAL samples from 133 ICU patients were included in this semiprospective study. Participating centers were the medical university hospitals of Graz, Vienna and Innsbruck in Austria and the University Hospital of Mannheim, Germany. Fungal infections were classified according to modified European Organization for Research and Treatment of Cancer/Mycoses Study Group criteria. Results: Two patients (four BALs) had proven IPA, fourteen patients (sixteen BALs) had probable IPA, twenty patients (twenty-one BALs) had possible IPA and ninety-seven patients (one hundred eight BALs) did not fulfill IPA criteria. Sensitivity, specificity, negative predictive value, positive predictive value and diagnostic odds ratios for diagnosing proven and probable IPA using LFD tests of BAL were 80%, 81%, 96%, 44% and 17.6, respectively. Fungal BAL culture exhibited a sensitivity of 50% and a specificity of 85%. Conclusion: LFD tests of BAL showed promising results for IPA diagnosis in ICU patients. Furthermore, the LFD test can be performed easily and provides rapid results. Therefore, it may be a reliable alternative for IPA diagnosis in ICU patients if GM results are not rapidly available. Trial registration: ClinicalTrials.gov NCT02058316. Registered 20 January 2014

    INTRACEREBROVENTRICULAR APPLICATION OF COMPETITIVE AND NONCOMPETITIVE NMDA ANTAGONISTS INDUCE SIMILAR EFFECTS UPON RAT HIPPOCAMPAL ELECTROENCEPHALOGRAM AND LOCAL CEREBRAL GLUCOSE-UTILIZATION

    No full text
    In this study we have used electrophysiological and metabolic markers to investigate the effects of competitive and non-competitive NMDA antagonists in rats after central or peripheral administration. The non-competitive antagonist, MK-801, induced dose-dependent suppression of rat hippocampal EEG energy both after intraperitoneal (i.p.) and intracerebroventricular (i.c.v.) application. Similar effects were observed after i.p. and i.c.v. application of the competitive antagonist, DL-CPP-ene. Whereas the MK-801 was more potent after i.p. application, DL-CPP-ene was more potent after i.c.v. administration. Intracerebroventricular administration of MK-801 and DL-CPP-ene resulted in similar changes in the pattern of local cerebral glucose utilization in the olfactory tubercle and regions of the limbic system such as the anteroventral thalamus, hippocampus and entorhinal cortex. Intravenous (i.v.) administration of MK-801 induced increases in glucose metabolism similar to those observed after i.c.v. application. In contrast, i.v. administration of DL-CPP-ene induced only small decreases of glucose utilization in several regions of the central sensory system. Thus the blockade of glutamatergic (NMDA) transmission results in decreased hippocampal EEG activity which is paralleled by increased metabolic activity in this area. We conclude from EEG recordings and [14C]2-deoxyglucose uptake experiments that both non-competitive and competitive NMDA antagonists produce the same pattern of alterations after i.c.v. administration. Apparent differences in efficacy after peripheral administration may be largely due to differences in bioavaliability
    corecore