36 research outputs found

    Relationship between structural changes, hydrogen content and annealing in stacks of ultrathin Si/Ge amorphous layers

    Get PDF
    Amorphous Si, Ge and SiGe alloys are often doped with H in order to passivate the dangling bonds. However, H is not stable against light soaking and heat treatments yielding degradation of the electrical-optical properties. We present results on the structural instability, as a function of annealing, caused by H in multilayers (MLs) of alternating 3 nm thick a-Si and a-Ge layers deposited by sputtering. H was added at flow rates of 0.4, 0.8, 1.5, 3 and 6 ml/min. By ERDA it was seen that for flow rates ≥1.5 ml/min the effective H content incorporated in the samples saturates at ∼16 at. %. IR optical absorbance shows that mostly Si and Ge monohydrides form. Annealing was done at 673 K for times of 1 to 10 h. The evolution of the properties of the MLs as a function of annealing and H content was followed by IR optical absorbance, TEM, AFM, ERDA. With increasing annealing time/temperature and H content the surface morphology degrades with formation of bubbles and craters whose size and density increase up to 9 μm and 6.7x105 cm-2 for a H flow rate of 6 ml/min. The signal of Ge-H and Si-H complexes almost completely vanish in the IR absorbance spectra upon annealing indicating that H is released to the lattice. This supports the conclusion that it is the released H that produces the bubbles and the craters when the H bubbles blow up because of a too high internal pressure. ERDA experiments performed on single layers of a-Si and a-Ge, showing a faster H released from a-Si than from a-Ge, and energy filtered TEM (EFTEM) maps, showing larger broadening of the a-Si layers in the ML structure, suggest that upon annealing H is first released from a-Si layers. This is in agreement with published data reporting on the lower binding energy of Si-H with respect to Ge-H in amorphous materials

    Hydrogen behaviour in amorphous Si/Ge nano-structures after annealing

    Get PDF
    The H behaviour in a-Si, a-Ge, a-SiGe is still debated, also thanks to their employment in photovoltaic solar cells whose performance depends on dangling bonds passivation by H doping. a-SiGe can be obtained by depositing alternating nano-layers of a-Si and a-Ge and intermixing the 2 atoms by annealing. Here results on H behaviour upon annealing of nano-structures made of 50 couples of very thin (3 nm each) alternating layers of a-Si and a-Ge are given. The superlattice nano-structures were deposited by sputtering. Hydrogen was added at flow rates of 0.4 to 6 ml/min. ERDA of a-Si and a-Ge single layers showed that for flows ≥1.5ml/min the incorporated H saturates at 16 at% and 7 at% in Si and Ge, respectively. IR optical absorbance showed that H is mostly incorporated as Si and Ge monohydrides. Annealing was done at 673 K for times between 1 and 10 h. The H behaviour in nano-structures as a function of annealing and H content was followed by IR optical absorbance, AFM and ERDA. With increasing annealing temperature/time the surface morphology degrades with formation of bumps and craters whose size and density increase with increasing H content. Upon annealing the signals of Ge-H and Si-H complexes disappear in the IR spectra indicating that H is released to the lattice. This supports the conclusion that it is the released H that produces bumps and craters when the bumps blow up because of the high internal pressure of H. ERDA of a-Si and a-Ge single layers, showing a faster H release in a-Ge than in a-Si, suggests that in the superlattice nano-structures H is first released from the a-Ge layers upon annealing. This agrees with literature reporting on the lower binding energy of Ge-H with respect to Si-H. It also shows that H is unstable against annealing

    Sex Reversal in Zebrafish fancl Mutants Is Caused by Tp53-Mediated Germ Cell Apoptosis

    Get PDF
    The molecular genetic mechanisms of sex determination are not known for most vertebrates, including zebrafish. We identified a mutation in the zebrafish fancl gene that causes homozygous mutants to develop as fertile males due to female-to-male sex reversal. Fancl is a member of the Fanconi Anemia/BRCA DNA repair pathway. Experiments showed that zebrafish fancl was expressed in developing germ cells in bipotential gonads at the critical time of sexual fate determination. Caspase-3 immunoassays revealed increased germ cell apoptosis in fancl mutants that compromised oocyte survival. In the absence of oocytes surviving through meiosis, somatic cells of mutant gonads did not maintain expression of the ovary gene cyp19a1a and did not down-regulate expression of the early testis gene amh; consequently, gonads masculinized and became testes. Remarkably, results showed that the introduction of a tp53 (p53) mutation into fancl mutants rescued the sex-reversal phenotype by reducing germ cell apoptosis and, thus, allowed fancl mutants to become fertile females. Our results show that Fancl function is not essential for spermatogonia and oogonia to become sperm or mature oocytes, but instead suggest that Fancl function is involved in the survival of developing oocytes through meiosis. This work reveals that Tp53-mediated germ cell apoptosis induces sex reversal after the mutation of a DNA–repair pathway gene by compromising the survival of oocytes and suggests the existence of an oocyte-derived signal that biases gonad fate towards the female developmental pathway and thereby controls zebrafish sex determination

    Relationship between structural changes, hydrogen content and annealing in stacks of ultrathin Si/Ge amorphous layers

    No full text
    Abstract Hydrogenated multilayers (MLs) of a-Si/a-Ge have been analysed to establish the reasons of H release during annealing that has been seen to bring about structural modifications even up to well-detectable surface degradation. Analyses carried out on single layers of a-Si and a-Ge show that H is released from its bond to the host lattice atom and that it escapes from the layer much more efficiently in a-Ge than in a-Si because of the smaller binding energy of the H-Ge bond and probably of a greater weakness of the Ge lattice. This should support the previous hypothesis that the structural degradation of a-Si/a-Ge MLs primary starts with the formation of H bubbles in the Ge layers.</p
    corecore