15 research outputs found

    IGF-1 Induction by Acylated Steryl β-Glucosides Found in a Pre-Germinated Brown Rice Diet Reduces Oxidative Stress in Streptozotocin-Induced Diabetes

    Get PDF
    BACKGROUND: The pathology of diabetic neuropathy involves oxidative stress on pancreatic β-cells, and is related to decreased levels of Insulin-like growth factor 1 (IGF-1). Acylated steryl β-glucoside (PR-ASG) found in pre-germiated brown rice is a bioactive substance exhibiting properties that enhance activity of homocysteine-thiolactonase (HTase), reducing oxidative stress in diabetic neuropathy. The biological importance of PR-ASG in pancreatic β-cells remains unknown. Here we examined the effects of PR-ASG on IGF-1 and glucose metabolism in β-cells exposed to oxidative stress. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, a pre-germinated brown rice (PR)-diet was tested in streptozotocin (STZ)-induced diabetic rats. Compared with diabetic rats fed control diets, the PR-diet fed rats showed an improvement of serum metabolic and neurophysiological parameters. In addition, IGF-1 levels were found to be increased in the serum, liver, and pancreas of diabetic rats fed the PR-diet. The increased IGF-1 level in the pancreas led us to hypothesize that PR-ASG is protective for islet β-cells against the extensive injury of advanced or severe diabetes. Thus we examined PR-ASG to determine whether it showed anti-apoptotic, pro-proliferative effects on the insulin-secreting β-cells line, INS-1; and additionally, whether PR-ASG stimulated IGF-1 autocrine secretion/IGF-1-dependent glucose metabolism. We have demonstrated for the first time that PR-ASG increases IGF-1 production and secretion from pancreatic β-cells. CONCLUSION/SIGNIFICANCE: These findings suggest that PR-ASG may affect pancreatic β-cells through the activation of an IGF-1-dependent mechanism in the diabetic condition. Thus, intake of pre-germinated brown rice may have a beneficial effect in the treatment of diabetes, in particular diabetic neuropathy

    Stabilized nanoparticles of phytosterol by rapid expansion from supercritical solution into aqueous solution

    No full text
    The basic objective of this work was to form stable suspensions of submicron particles of phytosterol, a water-insoluble drug, by rapid expansion of supercritical solution into aqueous solution (RESSAS). A supercritical phytosterol/CO2 mixture was expanded into an aqueous surfactant solution. In these experiments 4 different surfactants were used to impede growth and agglomeration of the submicron particles resulting from collisions in the free jet. The concentration of the drug in the aqueous surfactant solution was determined by high-performance liquid chromatography, while the size of the stabilized particles was measured by dynamic light scattering. Submicron phytosterol particles (<500 nm) were stabilized and in most cases a bimodal particle size distribution was obtained. Depending on surfactant and concentration of the surfactant solution, suspensions with drug concentrations up to 17 g/dm3 could be achieved, which is 2 orders of magnitude higher than the equilibrium solubility of phytosterol. Long-term stability studies indicate modest particle growth over 12 months. Thus, the results demonstrate that RESSAS can be a promising process for stabilizing submicron particles in aqueous solutions

    Chapter 19 Global Cambrian trilobite palaeobiogeography assessed using parsimony analysis of endemicity

    No full text
    <p>Palaeobiogeographical data on Cambrian trilobites obtained during the twentieth century are combined in this paper to evaluate palaeoceanographic links through <em>c.</em> 30 myr, once these arthropods biomineralized. Worldwide major tectonostratigraphic units are characterized at series intervals of Cambrian time and datasets of trilobite genera (629 for Cambrian Series 2, 965 for Cambrian Series 3, and 866 for the Furongian Series) are analysed using parsimony analysis of endemicity. Special attention is given to the biogeographical observations made in microcontinents and exotic terranes. The same is done for platform-basinal transects of well-known continental margins. The parsimony analysis of endemicity analysis resulted in distinct palaeogeographical area groupings among the tectonostratigraphic units. With these groupings, several palaeobiogeographical units are distinguished, which do not necessarily fit the previously proposed biogeographical realms and provinces. Their development and spatial distributions are broadly controlled by Cambrian palaeoclimates, palaeogeographical conditions (e.g. carbonate productivity and anoxic conditions) and ocean current circulation. </p
    corecore