572 research outputs found

    Design and testing of hydrophobic core/hydrophilic shell nano/micro particles for drug-eluting stent coating

    Get PDF
    In this study, we designed a novel drug-eluting coating for vascular implants consisting of a core coating of the anti-proliferative drug docetaxel (DTX) and a shell coating of the platelet glycoprotein IIb/IIIa receptor monoclonal antibody SZ-21. The core/shell structure was sprayed onto the surface of 316L stainless steel stents using a coaxial electrospray process with the aim of creating a coating that exhibited a differential release of the two drugs. The prepared stents displayed a uniform coating consisting of nano/micro particles. In vitro drug release experiments were performed, and we demonstrated that a biphasic mathematical model was capable of capturing the data, indicating that the release of the two drugs conformed to a diffusion-controlled release system. We demonstrated that our coating was capable of inhibiting the adhesion and activation of platelets, as well as the proliferation and migration of smooth muscle cells (SMCs), indicating its good biocompatibility and anti-proliferation qualities. In an in vivo porcine coronary artery model, the SZ-21/DTX drug-loaded hydrophobic core/hydrophilic shell particle coating stents were observed to promote re-endothelialization and inhibit neointimal hyperplasia. This core/shell particle-coated stent may serve as part of a new strategy for the differential release of different functional drugs to sequentially target thrombosis and in-stent restenosis during the vascular repair process and ensure rapid re-endothelialization in the field of cardiovascular disease

    Massless D-strings and moduli stabilization in type I cosmology

    Get PDF
    We consider the cosmological evolution induced by the free energy F of a gas of maximally supersymmetric heterotic strings at finite temperature and weak coupling in dimension D>=4. We show that F, which plays the role of an effective potential, has minima associated to enhanced gauge symmetries, where all internal moduli can be attracted and dynamically stabilized. Using the fact that the heterotic/type I S-duality remains valid at finite temperature and can be applied at each instant of a quasi-static evolution, we find in the dual type I cosmology that all internal NS-NS and RR moduli in the closed string sector and the Wilson lines in the open string sector can be stabilized. For the special case of D=6, the internal volume modulus remains a flat direction, while the dilaton is stabilized. An essential role is played by light D-string modes wrapping the internal manifold and whose contribution to the free energy cannot be omitted, even when the type I string is at weak coupling. As a result, the order of magnitude of the internal radii expectation values on the type I side is (lambda_I alpha')^{1/2}, where lambda_I is the ten-dimensional string coupling. The non-perturbative corrections to the type I free energy can alternatively be described as effects of "thermal E1-instantons", whose worldsheets wrap the compact Euclidean time cycle.Comment: 39 pages, 1 figur

    Electropermeabilization of endocytotic vesicles in B16 F1 mouse melanoma cells

    Get PDF
    It has been reported previously that electric pulses of sufficiently high voltage and short duration can permeabilize the membranes of various organelles inside living cells. In this article, we describe electropermeabilization of endocytotic vesicles in B16 F1 mouse melanoma cells. The cells were exposed to short, high-voltage electric pulses (from 1 to 20 pulses, 60 ns, 50 kV/cm, repetition frequency 1 kHz). We observed that 10 and 20 such pulses induced permeabilization of membranes of endocytotic vesicles, detected by release of lucifer yellow from the vesicles into the cytosol. Simultaneously, we detected uptake of propidium iodide through plasma membrane in the same cells. With higher number of pulses permeabilization of the membranes of endocytotic vesicles by pulses of given parameters is accompanied by permeabilization of plasma membrane. However, with lower number of pulses only permeabilization of the plasma membrane was detected

    The role of metacognition in self-critical rumination: an investigation in individuals presenting with low self-esteem

    Get PDF
    Background: No research, to date, has directly investigated the role of metacognition in self-critical rumination and low self-esteem. Aim: To investigate the presence of metacognitive beliefs about self-critical rumination; the goal of self-critical rumination and its stop signal; and the degree of detachment from intrusive self-critical thoughts. Method: Ten individuals reporting both a self-acknowledged tendency to judge themselves critically and having low self-esteem were assessed using metacognitive profiling, a semi-structured interview. Results: All participants endorsed both positive and negative metacognitive beliefs about self-critical rumination. Positive metacognitive beliefs concerned the usefulness of self-critical rumination as a means of improving cognitive performance and enhancing motivation. Negative metacognitive beliefs concerned the uncontrollability of self-critical rumination and its negative impact on mood, motivation and perception of self-worth. The primary goal of engaging in self-critical rumination was to achieve a better or clearer understanding of a given trigger situation or to feel more motivated to resolve it. However, only four participants were able to identify when this goal had been achieved, which was if the trigger situation were not to occur again. Participants unanimously stated that they were either unable to detach from their self-critical thoughts or could do so some of the time with varying degrees of success. More often than not, though, self-critical thoughts were viewed as facts, would rarely be seen as distorted or biased, and could take hours or days to dissipate. Conclusions: These findings provide preliminary evidence that specific facets of metacognition play a role in the escalation and perseveration of self-critical rumination

    Direct EPR Detection of Nitric Oxide in Mice Infected with the Pathogenic Mycobacterium Mycobacterium tuberculosis

    Get PDF
    It has been shown that treatment of mice preinfected with Mycobacterium tuberculosis with spin NO traps (iron complexes with diethyldithiocarbamate) enables detection of large amounts of NO in internal organs 2 and 4 weeks after infection (up to 55–57 μmol/kg of wet lung tissue accumulated with spin NO traps during 30 min). The animals were infected with the drug-sensitive laboratory strain H37Rv and a clinical isolate nonrespondent to antituberculous drugs (the multidrug-resistant strain of M. tuberculosis) obtained from a patient with an active form of tuberculosis. Two weeks after infection with the multidrug-resistant strain, the NO level in the lungs, spleen, liver and kidney increased sharply concurrently with slight lesions of lung tissue. A reverse correlation, i.e., low level of NO in the lungs and other internal organs and extensive injury of lung tissue, was established for H37Rv-infected mice. Four weeks after infection, NO production in the lungs increased dramatically for both M. tuberculosis strains resulting in 80–84% damage of lung tissue. The lesion is suggested to be due to the development of defense mechanisms in M. tuberculosis counteracting NO effects

    Gene expression signatures associated with the in vitro resistance to two tyrosine kinase inhibitors, nilotinib and imatinib

    Get PDF
    The use of selective inhibitors targeting Bcr-Abl kinase is now established as a standard protocol in the treatment of chronic myelogenous leukemia; however, the acquisition of drug resistance is a major obstacle limiting the treatment efficacy. To elucidate the molecular mechanism of drug resistance, we established K562 cell line models resistant to nilotinib and imatinib. Microarray-based transcriptome profiling of resistant cells revealed that nilotinib- and imatinib-resistant cells showed the upregulation of kinase-encoding genes (AURKC, FYN, SYK, BTK and YES1). Among them, the upregulation of AURKC and FYN was observed both in nilotinib- and imatinib-resistant cells irrespective of exposure doses, while SYK, BTK and YES1 showed dose-dependent upregulation of expression. Upregulation of EGF and JAG1 oncogenes as well as genes encoding ATP-dependent drug efflux pump proteins such as ABCB1 was also observed in the resistant cells, which may confer alternative survival benefits. Functional gene set analysis revealed that molecular categories of ‘ATPase activity', ‘cell adhesion' or ‘tyrosine kinase activity' were commonly activated in the resistant clones. Taken together, the transcriptome analysis of tyrosine kinase inhibitors (TKI)-resistant clones provides the insights into the mechanism of drug resistance, which can facilitate the development of an effective screening method as well as therapeutic intervention to deal with TKI resistance

    Early identification of first-year students at risk of dropping out of high-school entry medical school: the usefulness of teachers' ratings of class participation

    Get PDF
    Dropping out from undergraduate medical education is costly for students, medical schools, and society in general. Therefore, the early identification of potential dropout students is important. The contribution of personal features to dropout rates has merited exploration. However, there is a paucity of research on aspects of student experience that may lead to dropping out. In this study, underpinned by theoretical models of student commitment, involvement, and engagement, we explored the hypothesis of using inferior participation as an indicator of a higher probability of dropping out in year 1. Class participation was calculated as an aggregate score based on teachers' daily observations in class. The study used a longitudinal dataset of six cohorts of high-school entry students (N = 709, 67% females) in one medical school with an annual intake of 120 students. The findings confirmed the initial hypothesis and showed that lower scores of class participation in year 1 added predictive ability to pre-entry characteristics (Pseudo-R2 raised from 0.22 to 0.28). Even though the inclusion of course failure in year 1 resulted in higher explanatory power than participation in class (Pseudo-R2 raised from 0.28 to 0.63), ratings of class participation may be advantageous to anticipate dropout identification, as those can be collected prior to course failure. The implications for practice are that teachers' ratings of class participation can play a role in indicating medical students who may eventually drop out. We conclude that the scores of class participation can contribute to flagging systems for the early detection of student dropouts.(undefined)info:eu-repo/semantics/acceptedVersio
    corecore