52 research outputs found

    Accreting Millisecond X-Ray Pulsars

    Full text link
    Accreting Millisecond X-Ray Pulsars (AMXPs) are astrophysical laboratories without parallel in the study of extreme physics. In this chapter we review the past fifteen years of discoveries in the field. We summarize the observations of the fifteen known AMXPs, with a particular emphasis on the multi-wavelength observations that have been carried out since the discovery of the first AMXP in 1998. We review accretion torque theory, the pulse formation process, and how AMXP observations have changed our view on the interaction of plasma and magnetic fields in strong gravity. We also explain how the AMXPs have deepened our understanding of the thermonuclear burst process, in particular the phenomenon of burst oscillations. We conclude with a discussion of the open problems that remain to be addressed in the future.Comment: Review to appear in "Timing neutron stars: pulsations, oscillations and explosions", T. Belloni, M. Mendez, C.M. Zhang Eds., ASSL, Springer; [revision with literature updated, several typos removed, 1 new AMXP added

    Bacillus anthracis Peptidoglycan Stimulates an Inflammatory Response in Monocytes through the p38 Mitogen-Activated Protein Kinase Pathway

    Get PDF
    We hypothesized that the peptidoglycan component of B. anthracis may play a critical role in morbidity and mortality associated with inhalation anthrax. To explore this issue, we purified the peptidoglycan component of the bacterial cell wall and studied the response of human peripheral blood cells. The purified B. anthracis peptidoglycan was free of non-covalently bound protein but contained a complex set of amino acids probably arising from the stem peptide. The peptidoglycan contained a polysaccharide that was removed by mild acid treatment, and the biological activity remained with the peptidoglycan and not the polysaccharide. The biological activity of the peptidoglycan was sensitive to lysozyme but not other hydrolytic enzymes, showing that the activity resides in the peptidoglycan component and not bacterial DNA, RNA or protein. B. anthracis peptidoglycan stimulated monocytes to produce primarily TNFα; neutrophils and lymphocytes did not respond. Peptidoglycan stimulated monocyte p38 mitogen-activated protein kinase and p38 activity was required for TNFα production by the cells. We conclude that peptidoglycan in B. anthracis is biologically active, that it stimulates a proinflammatory response in monocytes, and uses the p38 kinase signal transduction pathway to do so. Given the high bacterial burden in pulmonary anthrax, these findings suggest that the inflammatory events associated with peptidoglycan may play an important role in anthrax pathogenesis

    Anti-inflammatory and anti-invasive effects of α-melanocyte-stimulating hormone in human melanoma cells

    Get PDF
    Alpha-melanocyte stimulating hormone (alpha-MSH) is known to have pleiotrophic functions including pigmentary, anti-inflammatory, antipyretic and immunoregulatory roles in the mammalian body. It is also reported to influence melanoma invasion with levels of alpha-, beta- and gamma-MSH correlated clinically with malignant melanoma development, but other studies suggest alpha-MSH acts to retard invasion. In the present study, we investigated the action of alpha-MSH on three human melanoma cell lines (HBL, A375-SM and C8161) differing in metastatic potential. alpha-melanocyte-simulating hormone reduced invasion through fibronectin and also through a human reconstructed skin composite model for the HBL line, and inhibited proinflammatory cytokine-stimulated activation of the NF-kappaB transcription factor. However, A375-SM and C8161 cells did not respond to alpha-MSH. Immunofluorescent microscopy and Western blotting identified melanocortin-1 receptor (MC-1R) expression for all three lines and MC-2R on HBL and A375-SM lines. Receptor binding identified a similar affinity for alpha-MSH for all three lines with the highest number of binding sites on HBL cells. Only the HBL melanoma line demonstrated a detectable cyclic adenosine monophosphate (cAMP) response to alpha-MSH, although all three lines responded to acute alpha-MSH addition (+(-)-N(6)-(2-phenylisopropyl)-adenosine (PIA)) with an elevation in intracellular calcium. The nonresponsive lines displayed MC-1R polymorphisms (C8161, Arg (wt) 151/Cys 151; A375-SM, homozygous Cys 151), whereas the HBL line was wild type. Stable transfection of the C8161 line with wild-type MC-1R produced cells whose invasion was significantly inhibited by alpha-MSH. From this data, we conclude that alpha-MSH can reduce melanoma cell invasion and protect cells against proinflammatory cytokine attack in cells with the wild-type receptor (HBL).Journal ArticleResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Presenilin 2 Is the Predominant γ-Secretase in Microglia and Modulates Cytokine Release

    Get PDF
    Presenilin 1 (PS1) and Presenilin 2 (PS2) are the enzymatic component of the γ-secretase complex that cleaves amyloid precursor protein (APP) to release amyloid beta (Aβ) peptide. PS deficiency in mice results in neuroinflammation and neurodegeneration in the absence of accumulated Aβ. We hypothesize that PS influences neuroinflammation through its γ-secretase action in CNS innate immune cells. We exposed primary murine microglia to a pharmacological γ-secretase inhibitor which resulted in exaggerated release of TNFα and IL-6 in response to lipopolysaccharide. To determine if this response was mediated by PS1, PS2 or both we used shRNA to knockdown each PS in a murine microglia cell line. Knockdown of PS1 did not lead to decreased γ-secretase activity while PS2 knockdown caused markedly decreased γ-secretase activity. Augmented proinflammatory cytokine release was observed after knockdown of PS2 but not PS1. Proinflammatory stimuli increased microglial PS2 gene transcription and protein in vitro. This is the first demonstration that PS2 regulates CNS innate immunity. Taken together, our findings suggest that PS2 is the predominant γ-secretase in microglia and modulates release of proinflammatory cytokines. We propose PS2 may participate in a negative feedback loop regulating inflammatory behavior in microglia

    Skin Stem Cell Hypotheses and Long Term Clone Survival - Explored Using Agent-based Modelling

    Get PDF
    Epithelial renewal in skin is achieved by the constant turnover and differentiation of keratinocytes. Three popular hypotheses have been proposed to explain basal keratinocyte regeneration and epidermal homeostasis: 1) asymmetric division (stem-transit amplifying cell); 2) populational asymmetry (progenitor cell with stochastic fate); and 3) populational asymmetry with stem cells. In this study, we investigated lineage dynamics using these hypotheses with a 3D agent-based model of the epidermis. The model simulated the growth and maintenance of the epidermis over three years. The offspring of each proliferative cell was traced. While all lineages were preserved in asymmetric division, the vast majority were lost when assuming populational asymmetry. The third hypothesis provided the most reliable mechanism for self-renewal by preserving genetic heterogeneity in quiescent stem cells, and also inherent mechanisms for skin ageing and the accumulation of genetic mutation
    • …
    corecore