56 research outputs found

    The Angiotensin Converting Enzyme Insertion/Deletion polymorphism is not associated with an increased risk of death or bronchopulmonary dysplasia in ventilated very low birth weight infants

    Get PDF
    BACKGROUND: The ACE gene contains a polymorphism consisting of either the presence (insertion, I) or absence (deletion, D) of a 287 bp alu repeat in intron 16. The D allele is associated with increased ACE activity in both tissue and plasma. The DD genotype is associated with risk of developing ARDS and mortality. The frequency of the D allele is higher in patients with pulmonary fibrosis, sarcoidosis and berylliosis. The role of this polymorphism has not been studied in the development of BPD in the premature newborn. METHODS: ACE I/D genotype was determined in 245 (194 African-American, 47 Caucasian and 4 Hispanic) mechanically ventilated infants weighing less than 1250 grams at birth and compared to outcome (death and/or development of BPD). RESULTS: The incidence of the D allele in the study population was 0.58. Eighty-eight (35.9%) infants were homozygous DD, 107 (43.7%) were heterozygous ID and 50 (20.4%) were homozygous II. There were no significant differences between genotype groups with respect to ethnic origin, birth weight, gestation, or gender. There was no effect of the ACE I/D polymorphism on mortality or development of BPD (O(2 )on 28 days or 36 weeks PCA). Secondary outcomes (intraventricular hemorrhage and periventricular leukomalacia) similarly were not influenced by the ACE ID polymorphism. CONCLUSIONS: The ACE I/D polymorphism does not significantly influence the development of BPD in ventilated infants less than 1250 grams

    Creatine Protects against Excitoxicity in an In Vitro Model of Neurodegeneration

    Get PDF
    Creatine has been shown to be neuroprotective in aging, neurodegenerative conditions and brain injury. As a common molecular background, oxidative stress and disturbed cellular energy homeostasis are key aspects in these conditions. Moreover, in a recent report we could demonstrate a life-enhancing and health-promoting potential of creatine in rodents, mainly due to its neuroprotective action. In order to investigate the underlying pharmacology mediating these mainly neuroprotective properties of creatine, cultured primary embryonal hippocampal and cortical cells were challenged with glutamate or H2O2. In good agreement with our in vivo data, creatine mediated a direct effect on the bioenergetic balance, leading to an enhanced cellular energy charge, thereby acting as a neuroprotectant. Moreover, creatine effectively antagonized the H2O2-induced ATP depletion and the excitotoxic response towards glutamate, while not directly acting as an antioxidant. Additionally, creatine mediated a direct inhibitory action on the NMDA receptor-mediated calcium response, which initiates the excitotoxic cascade. Even excessive concentrations of creatine had no neurotoxic effects, so that high-dose creatine supplementation as a health-promoting agent in specific pathological situations or as a primary prophylactic compound in risk populations seems feasible. In conclusion, we were able to demonstrate that the protective potential of creatine was primarily mediated by its impact on cellular energy metabolism and NMDA receptor function, along with reduced glutamate spillover, oxidative stress and subsequent excitotoxicity

    The creatine kinase system and pleiotropic effects of creatine

    Get PDF
    The pleiotropic effects of creatine (Cr) are based mostly on the functions of the enzyme creatine kinase (CK) and its high-energy product phosphocreatine (PCr). Multidisciplinary studies have established molecular, cellular, organ and somatic functions of the CK/PCr system, in particular for cells and tissues with high and intermittent energy fluctuations. These studies include tissue-specific expression and subcellular localization of CK isoforms, high-resolution molecular structures and structure–function relationships, transgenic CK abrogation and reverse genetic approaches. Three energy-related physiological principles emerge, namely that the CK/PCr systems functions as (a) an immediately available temporal energy buffer, (b) a spatial energy buffer or intracellular energy transport system (the CK/PCr energy shuttle or circuit) and (c) a metabolic regulator. The CK/PCr energy shuttle connects sites of ATP production (glycolysis and mitochondrial oxidative phosphorylation) with subcellular sites of ATP utilization (ATPases). Thus, diffusion limitations of ADP and ATP are overcome by PCr/Cr shuttling, as most clearly seen in polar cells such as spermatozoa, retina photoreceptor cells and sensory hair bundles of the inner ear. The CK/PCr system relies on the close exchange of substrates and products between CK isoforms and ATP-generating or -consuming processes. Mitochondrial CK in the mitochondrial outer compartment, for example, is tightly coupled to ATP export via adenine nucleotide transporter or carrier (ANT) and thus ATP-synthesis and respiratory chain activity, releasing PCr into the cytosol. This coupling also reduces formation of reactive oxygen species (ROS) and inhibits mitochondrial permeability transition, an early event in apoptosis. Cr itself may also act as a direct and/or indirect anti-oxidant, while PCr can interact with and protect cellular membranes. Collectively, these factors may well explain the beneficial effects of Cr supplementation. The stimulating effects of Cr for muscle and bone growth and maintenance, and especially in neuroprotection, are now recognized and the first clinical studies are underway. Novel socio-economically relevant applications of Cr supplementation are emerging, e.g. for senior people, intensive care units and dialysis patients, who are notoriously Cr-depleted. Also, Cr will likely be beneficial for the healthy development of premature infants, who after separation from the placenta depend on external Cr. Cr supplementation of pregnant and lactating women, as well as of babies and infants are likely to be of benefit for child development. Last but not least, Cr harbours a global ecological potential as an additive for animal feed, replacing meat- and fish meal for animal (poultry and swine) and fish aqua farming. This may help to alleviate human starvation and at the same time prevent over-fishing of oceans

    Versican is upregulated in CNS injury and is a product of oligodendrocyte lineage cells.

    No full text
    Chondroitin sulfate proteoglycan (CS-PG) expression is increased in response to CNS injury and limits the capacity for axonal regeneration. Previously we have shown that neurocan is one of the CS-PGs that is upregulated (Asher et al., 2000). Here we show that another member of the aggrecan family, versican, is also upregulated in response to CNS injury. Labeling of frozen sections 7 d after a unilateral knife lesion to the cerebral cortex revealed a clear increase in versican immunoreactivity around the lesion. Western blot analysis of extracts prepared from injured and uninjured tissue also revealed considerably more versican in the injured tissue extract. In vitro studies revealed versican to be a product of oligodendrocyte lineage cells (OLCs). Labeling was seen between the late A2B5-positive stage and the O1-positive pre-oligodendrocyte stage. Neither immature, bipolar A2B5-positive cells, nor differentiated, myelin-forming oligodendrocytes were labeled. The amount of versican in conditioned medium increased as these cells differentiated. Versican and tenascin-R colocalized in OLCs, and coimmunoprecipitation indicated that the two exist as a complex in oligodendrocyte-conditioned medium. Treatment of pre-oligodendrocytes with hyaluronidase led to the release of versican, indicating that its retention at the cell surface is dependent on hyaluronate (HA). In rat brain, approximately half of the versican is bound to hyaluronate. We also provide evidence of a role for CS-PGs in the axon growth-inhibitory properties of oligodendrocytes. Because large numbers of OLCs are recruited to CNS lesions, these results suggest that OLC-derived versican contributes to the inhospitable environment of the injured CNS.</p

    Axon behaviour at Schwann cell - astrocyte boundaries:  manipulation of axon signalling pathways and the neural adhesion molecule L1 can enable axons to cross.

    No full text
    Axon regeneration in vivo is blocked at boundaries between Schwann cells and astrocytes, such as occur at the dorsal root entry zone and around peripheral nerve or Schwann cell grafts. We have created a tissue culture model of these boundaries in Schwann cell - astrocyte monolayer co-cultures. Axon behaviour resembles that in vivo, with axons showing a strong preference for Schwann cells over astrocytes. At boundaries between the two cell types, axons growing on astrocytes cross readily onto Schwann cells, but only 15% of axons growing on Schwann cells are able to cross onto astrocytes. Treatment with chondroitinase or chlorate to reduce inhibition by proteoglycans did not change this behaviour. The neural adhesion molecule L1 is present on Schwann cells and not astrocytes, and manipulation of L1 by application of an antibody, L1-Fc in solution, or adenoviral transduction of L1 into astrocytes increased the proportion of axons able to cross onto astrocytes to 40-50%. Elevating cAMP levels increased crossing from Schwann cells onto astrocytes in live and fixed cultures, and had a co-operative effect with NT-3 but not with NGF. Inactivation of Rho with a cell-permeant form of C3 exoenzyme also increased crossing from Schwann cells to astrocytes. Our experiments indicate that the preference of axons for Schwann cells is largely mediated by the presence of L1 on Schwann cells but not astrocytes, and that manipulation of growth cone signalling pathways can allow axons to disregard boundaries between the two cell types.</p
    corecore