20 research outputs found

    Microalgae as second generation biofuel. A review

    Full text link

    Assessment of a method to characterize antibody selectivity and specificity for use in immunoprecipitation

    No full text
    Antibodies are used in multiple cell biology applications, but there are no standardized methods to assess antibody quality—an absence that risks data integrity and reproducibility. We describe a mass spectrometry–based standard operating procedure for scoring immunoprecipitation antibody quality. We quantified the abundance of all the proteins in immunoprecipitates of 1,124 new recombinant antibodies for 152 chromatin-related human proteins by comparing normalized spectral abundance factors from the target antigen with those of all other proteins. We validated the performance of the standard operating procedure in blinded studies in five independent laboratories. Antibodies for which the target antigen or a member of its known protein complex was the most abundant protein were classified as 'IP gold standard'. This method generates quantitative outputs that can be stored and archived in public databases, and it represents a step toward a platform for community benchmarking of antibody quality

    Iatrogenic diplopia

    No full text
    Diplopia is a very disturbing condition that has been reported as a complication of several surgical procedures. The following review aims to identify the ocular and nonocular surgical techniques more often associated with this undesirable result. Diplopia is reported as an adverse outcome of some neurosurgical procedures, dental procedures, endoscopic paranasal sinus surgery, and several ophthalmic procedures. The most common patterns and some recommendations in order to prevent and treat this frustrating outcome are also given

    Second Generation Biofuels: High-Efficiency Microalgae for Biodiesel Production

    No full text
    The use of fossil fuels is now widely accepted as unsustainable due to depleting resources and the accumulation of greenhouse gases in the environment that have already exceeded the "dangerously high" threshold of 450 ppm CO(2)-e. To achieve environmental and economic sustainability, fuel production processes are required that are not only renewable, but also capable of sequestering atmospheric CO(2). Currently, nearly all renewable energy sources (e.g. hydroelectric, solar, wind, tidal, geothermal) target the electricity market, while fuels make up a much larger share of the global energy demand (similar to 66%). Biofuels are therefore rapidly being developed. Second generation microalgal systems have the advantage that they can produce a wide range of feedstocks for the production of biodiesel, bioethanol, biomethane and biohydrogen. Biodiesel is currently produced from oil synthesized by conventional fuel crops that harvest the sun's energy and store it as chemical energy. This presents a route for renewable and carbon-neutral fuel production. However, current supplies from oil crops and animal fats account for only approximately 0.3% of the current demand for transport fuels. Increasing biofuel production on arable land could have severe consequences for global food supply. In contrast, producing biodiesel from algae is widely regarded as one of the most efficient ways of generating biofuels and also appears to represent the only current renewable source of oil that could meet the global demand for transport fuels. The main advantages of second generation microalgal systems are that they: (1) Have a higher photon conversion efficiency (as evidenced by increased biomass yields per hectare): (2) Can be harvested batch-wise nearly all-year-round, providing a reliable and continuous supply of oil: (3) Can utilize salt and waste water streams, thereby greatly reducing freshwater use: (4) Can couple CO(2)-neutral fuel production with CO(2) sequestration: (5) Produce non-toxic and highly biodegradable biofuels. Current limitations exist mainly in the harvesting process and in the supply of CO(2) for high efficiency production. This review provides a brief overview of second generation biodiesel production systems using microalgae
    corecore