17 research outputs found

    Dynamic genomic architecture of mutualistic cooperation in a wild population of Mesorhizobium

    No full text
    Research on mutualism seeks to explain how cooperation can be maintained when uncooperative mutants co-occur with cooperative kin. Gains and losses of the gene modules required for cooperation punctuate symbiont phylogenies and drive lifestyle transitions between cooperative symbionts and uncooperative free-living lineages over evolutionary time. Yet whether uncooperative symbionts commonly evolve from within cooperative symbiont populations or from within distantly related lineages with antagonistic or free-living lifestyles (i.e., third-party mutualism exploiters or parasites), remains controversial. We use genomic data to show that genotypes that differ in the presence or absence of large islands of symbiosis genes are common within a single wild recombining population of Mesorhizobium symbionts isolated from host tissues and are an important source of standing heritable variation in cooperation in this population. In a focal population of Mesorhizobium , uncooperative variants that lack a symbiosis island segregate at 16% frequency in nodules, and genome size and symbiosis gene number are positively correlated with cooperation. This finding contrasts with the genomic architecture of variation in cooperation in other symbiont populations isolated from host tissues in which the islands of genes underlying cooperation are ubiquitous and variation in cooperation is primarily driven by allelic substitution and individual gene gain and loss events. Our study demonstrates that uncooperative mutants within mutualist populations can comprise a significant component of genetic variation in nature, providing biological rationale for models and experiments that seek to explain the maintenance of mutualism in the face of non-cooperators

    Diverse Mesorhizobium spp. with unique nodA nodulating the South African legume species of the genus Lessertia

    No full text
    Background and aims: Legumes of the genus Lessertia have recently been introduced to Australia in an attempt to increase the range of forage species available in Australian farming systems capable of dealing with a changing climate. This study assessed the diversity and the nodulation ability of a collection of Lessertia root nodule bacteria isolated from different agro-climatic areas of the Eastern and Western Capes of South Africa. Methods: The diversity and phylogeny of 43 strains was determined via the partial sequencing of the dnaK, 16srRNA and nodA genes. A glasshouse experiment was undertaken to evaluate symbiotic relationships between six Lessertia species and 17 rhizobia strains. Results: The dnaK and 16S rRNA genes of the majority of the strains clustered with the genus Mesorhizobium. The position of the strains at the intra-genus level was incongruent between phylogenies with few exceptions. The nodA genes from Lessertia spp. formed a cluster on their own, separate from the previously known Mesorhizobium nodA sequences. Strains showed differences in their nodulation and nitrogen fixation patterns that could be correlated with nodA gene phylogeny. L. diffusa, L. herbacea and L. excisa nodulated with nearly all the strains examined while L. capitata, L. incana and L. pauciflora were more stringent. Conclusion: Root nodule bacteria from Lessertia spp. were identified mainly as Mesorhizobium spp. Their nodA genes were unique and correlated with the nodulation and nitrogen fixation patterns of the strains. There were marked differences in promiscuity within Lessertia spp. and within strains of root nodule bacteria
    corecore