8,877 research outputs found

    Differentiability of the volume of a region enclosed by level sets

    Get PDF
    The level of a function f on an n-dimensional space encloses a region. The volume of a region between two such levels depends on both levels. Fixing one of them the volume becomes a function of the remaining level. We show that if the function f is smooth, the volume function is again smooth for regular values of f. For critical values of f the volume function is only finitely differentiable. The initial motivation for this study comes from Radiotherapy, where such volume functions are used in an optimization process. Thus their differentiability properties become important.Comment: 11 pages, 1 figur

    Diffusive Boundary Layers in the Free-Surface Excitable Medium Spiral

    Full text link
    Spiral waves are a ubiquitous feature of the nonequilibrium dynamics of a great variety of excitable systems. In the limit of a large separation in timescale between fast excitation and slow recovery, one can reduce the spiral problem to one involving the motion of a free surface separating the excited and quiescent phases. In this work, we study the free surface problem in the limit of small diffusivity for the slow field variable. Specifically, we show that a previously found spiral solution in the diffusionless limit can be extended to finite diffusivity, without significant alteration. This extension involves the creation of a variety of boundary layers which cure all the undesirable singularities of the aforementioned solution. The implications of our results for the study of spiral stability are briefly discussed.Comment: 6 pages, submitted to PRE Rapid Com

    The Universal Gaussian in Soliton Tails

    Full text link
    We show that in a large class of equations, solitons formed from generic initial conditions do not have infinitely long exponential tails, but are truncated by a region of Gaussian decay. This phenomenon makes it possible to treat solitons as localized, individual objects. For the case of the KdV equation, we show how the Gaussian decay emerges in the inverse scattering formalism.Comment: 4 pages, 2 figures, revtex with eps

    Nonlinear lattice model of viscoelastic Mode III fracture

    Full text link
    We study the effect of general nonlinear force laws in viscoelastic lattice models of fracture, focusing on the existence and stability of steady-state Mode III cracks. We show that the hysteretic behavior at small driving is very sensitive to the smoothness of the force law. At large driving, we find a Hopf bifurcation to a straight crack whose velocity is periodic in time. The frequency of the unstable bifurcating mode depends on the smoothness of the potential, but is very close to an exact period-doubling instability. Slightly above the onset of the instability, the system settles into a exactly period-doubled state, presumably connected to the aforementioned bifurcation structure. We explicitly solve for this new state and map out its velocity-driving relation

    Front Propagation up a Reaction Rate Gradient

    Full text link
    We expand on a previous study of fronts in finite particle number reaction-diffusion systems in the presence of a reaction rate gradient in the direction of the front motion. We study the system via reaction-diffusion equations, using the expedient of a cutoff in the reaction rate below some critical density to capture the essential role of fl uctuations in the system. For large density, the velocity is large, which allows for an approximate analytic treatment. We derive an analytic approximation for the front velocity depe ndence on bulk particle density, showing that the velocity indeed diverge s in the infinite density limit. The form in which diffusion is impleme nted, namely nearest-neighbor hopping on a lattice, is seen to have an essential impact on the nature of the divergence

    Phase-Field Model of Mode III Dynamic Fracture

    Full text link
    We introduce a phenomenological continuum model for mode III dynamic fracture that is based on the phase-field methodology used extensively to model interfacial pattern formation. We couple a scalar field, which distinguishes between ``broken'' and ``unbroken'' states of the system, to the displacement field in a way that consistently includes both macroscopic elasticity and a simple rotationally invariant short scale description of breaking. We report two-dimensional simulations that yield steady-state crack motion in a strip geometry above the Griffith threshold.Comment: submitted to PR

    Optical Superradiance from Nuclear Spin Environment of Single Photon Emitters

    Full text link
    We show that superradiant optical emission can be observed from the polarized nuclear spin ensemble surrounding a single photon emitter such as a single quantum dot (QD) or Nitrogen-Vacancy (NV) center. The superradiant light is emitted under optical pumping conditions and would be observable with realistic experimental parameters.Comment: 4+ pages, 3 figures, considerably rewritten, conclusions unchanged, accepted versio
    • …
    corecore