6 research outputs found

    Platinum-Niobium(V) Oxide/Carbon Nanocomposites Prepared By Microwave Synthesis For Ethanol Oxidation

    Get PDF
    In the present work, Pt nanoparticles were deposited by means of microwave synthesis on the primary carbon supported Nb2O5 composite which was prepared in two different ways: (A) by dispersion of Nb2O5 and carbon with the mass ratio equal to 1:1 in a 2-propanol solution by ultrasonication for 30 min. with further desiccation of the mixture and (B) by heating the Nb2O5/C composite obtained according to the procedure (A) at 500 °C for 2 h. The transmission electron microscopy was used to determine the shape and the size of catalyst particles. X-ray diffraction and inductively coupled plasma optical emission spectroscopy were employed to characterize the structure and composition of the synthesized catalysts. The electrocatalytic activity of the synthesized catalysts towards the oxidation of ethanol in an alkaline medium was investigated by means of cyclic voltammetry

    Investigation of peculiarities of electroless copper plating systems using hydroxycarboxylic acids as Cu(II) ligands

    No full text
    Electroless metal coating technique is one of the elegant ways of metal coating by controlling the temperature and pH of the plating bath in which there is no usage of electric current. The industrial electroless copper plating solution containing formaldehyde as reducing agent are known from the middle of the last century and are widespread in the practice up to now. However many chemical compounds used in such kind technological processes are hazardous for total environment, therefore the efforts are made to displace those substances with less hazardous or purely harmless compounds. Generally two classes of chemical compounds were proposed as EDTA alternative, namely alditols (polyhydroxylic alcohols) and hydroxypolycarboxylic acids. The aim of the work was to investigate peculiarities of formaldehyde containing alkaline electroless copper deposition systems using environment friendly hydroxycarboxylic acids as Cu(II) ligands. Two new Cu(II) ligands, namely citric acid and D-isomer of tartaric acid, were applied for the systems of electroless copper deposition. The results of the investigations show that the ligands mentioned can be successful applied in the processes of electroless copper deposition using formaldehyde as reducing agent. Citric acid (2-hydroxypropane-1,2,3-tricarboxylic acid) and different isomers of tartaric acid (2,3-dihydroxybutanedioic acid), namely L- and D-tartrate, and their racemic mixture DL-tartrate, forming sufficiently stable complexes with copper(II) ions in alkaline solutions, was found to be a suitable ligand for copper(II) chelating in alkaline (pH > 12) electroless copper deposition solutions. The thickness of the compact copper coatings obtained under optimal operating conditions in 1 h reaches ca. 3 mm. The plating solutions were stable and no signs of Cu(II) reduction in the bulk solution were observed. The anodic oxidation of HCHO on electrochemically and electrolessly deposited copper electrodes was investigated by means of cyclic voltammometry. The measurements of the mixed potential of copper electrode were performed in the course of electroless copper deposition. The results obtained were compared with the data obtained in the systems with other ligands. The possible equilibria in the solutions under investigation were discussed and specified

    Comparison of the Activity of 3D Binary or Ternary Cobalt Coatings for Hydrogen and Oxygen Evolution Reactions

    No full text
    In this study, cobalt-nickel (Co-Ni), cobalt-iron (Co-Fe), cobalt-iron-manganese (Co-Fe-Mn), cobalt-iron-molybdenum (Co-Fe-Mo), and cobalt-zinc (Co-Zn) coatings were studied as catalysts towards the evolution of hydrogen (HER) and oxygen (OER). The binary and ternary Co coatings were deposited on a copper surface using the electroless metal plating technique and morpholine borane (MB) as a reducing agent. The as-deposited Co-Ni, Co-Fe, Co-Fe-Mn, Co-Fe-Mo, and Co-Zn coatings produce compact and crack-free layers with typical globular morphology. It was found that the Co-Fe-Mo coating gives the lowest overpotential of 128.0 mV for the HER and the lowest overpotential of 455 mV for the OER to achieve a current density of 10 mA cm−2. The HER and OER current density values increase 1.4–2.0 times with an increase in temperature from 25 °C to 55 °C using the prepared 3D binary or ternary cobalt coatings for HER and OER. The highest mass electrocatalytic activity of 1.55 mA µg−1 for HER and 2.72 mA µg−1 for OER was achieved on the Co-Fe coating with a metal loading of 28.11 µg cm−2 at 25 °C

    Pd-Supported Co3O4/C Catalysts as Promising Electrocatalytic Materials for Oxygen Reduction Reaction

    No full text
    This paper describes the activity of PdCo3O4/C obtained by wet impregnation towards the oxygen reduction reaction (ORR). For this purpose, the Co3O4/C substrate was synthesized using the microwave irradiation heating method with further annealing of the substrate at 400 °C for 3 h (Co3O4/C-T). Then, the initial Co3O4/C substrate was impregnated with palladium chloride (Pd-Cl2-Co3O4/C), and then part of the obtained Pd-Cl2-Co3O4/C catalyst was annealed at 400 °C for 3 h (PdOCo3O4/C). The electrocatalytic activity of the prepared catalysts was investigated for the oxygen reduction reaction in alkaline media and compared with the commercial Pt/C (Tanaka wt. 46.6% Pt) catalyst. It was found that the annealed PdOCo3O4/C catalyst showed the largest ORR current density value of −11.27 mA cm−2 compared with Pd-Cl2-Co3O4/C (−7.39 mA cm−2) and commercial Pt/C (−5.25 mA cm−2)

    One-Pot Microwave-Assisted Synthesis of Graphene-Supported PtCoM (M = Mn, Ru, Mo) Catalysts for Low-Temperature Fuel Cells

    No full text
    In this study, one-pot microwave-assisted synthesis was used to fabricate the graphene (GR)-supported PtCoM catalysts where M = Mn, Ru, and Mo. The catalysts with the molar ratios of metals Pt:Co:Mn, Pt:Co:Ru, and Pt:Co:Mo equal to 1:3:1, 1:2:2, and 7:2:1, respectively, were prepared. Catalysts were characterized using Transmission Electron Microscopy (TEM). The electrocatalytic activity of the GR-supported PtCoMn, PtCoRu, and PtCoMo catalysts was evaluated toward methanol oxidation in an alkaline medium employing cyclic voltammetry and chrono-techniques. The most efficient electrochemical characteristics demonstrated the PtCoMn/GR catalyst with a current density value of 144.5 mA cm−2, which was up to 4.8 times higher than that at the PtCoRu(1:2:2)/GR, PtCoMo(7:2:1)/GR, and bare Pt/GR catalysts

    One-Pot Microwave-Assisted Synthesis of Graphene-Supported PtCoM (M = Mn, Ru, Mo) Catalysts for Low-Temperature Fuel Cells

    No full text
    In this study, one-pot microwave-assisted synthesis was used to fabricate the graphene (GR)-supported PtCoM catalysts where M = Mn, Ru, and Mo. The catalysts with the molar ratios of metals Pt:Co:Mn, Pt:Co:Ru, and Pt:Co:Mo equal to 1:3:1, 1:2:2, and 7:2:1, respectively, were prepared. Catalysts were characterized using Transmission Electron Microscopy (TEM). The electrocatalytic activity of the GR-supported PtCoMn, PtCoRu, and PtCoMo catalysts was evaluated toward methanol oxidation in an alkaline medium employing cyclic voltammetry and chrono-techniques. The most efficient electrochemical characteristics demonstrated the PtCoMn/GR catalyst with a current density value of 144.5 mA cm−2, which was up to 4.8 times higher than that at the PtCoRu(1:2:2)/GR, PtCoMo(7:2:1)/GR, and bare Pt/GR catalysts
    corecore