78 research outputs found
Microminiaturized Immunoassays Using Atomic Force Microscopy and Compositionally Patterned Antigen Arrays
This paper combines the topographic imaging capability of the atomic force microscope (AFM) with a compositionally patterned array of immobilized antigenic rabbit IgG on gold as an approach to performing immunoassays. The substrates are composed of micrometer-sized domains of IgG that are covalently linked to a photolithographically patterned array of a monolayer-based coupling agent. The immobilized coupling agent, which is prepared by the chemisorption of dithiobis(succinimidyl undecanoate) on gold, is separated by micrometer-sized grids of a monolayer formed from octadecanethiol (ODT). The strong hydrophobicity of the ODT adlayer, combined with the addition of the surfactant Tween 80 to the buffer solution that is used in forming the antibodyâantigen pairs, minimizes the nonspecific adsorption of proteinaceous materials to the grid regions. This minimization allows the grids to function as a reference plane for the AFM detection of the height increase when a complementary antibodyâantigen pair is formed. The advantageous features of this strategy, which include ease of sample preparation, an internal reference plane for the detection of topographic changes, and the potential for regeneration and reuse, are demonstrated using rabbit IgG as an immobilized antigen and goat anti-rabbit IgG as the complementary antibody. The prospects for further miniaturization are discussed
Coupling Filter-Based Thermal Desorption Chemical Ionization Mass Spectrometry with Liquid Chromatography/Electrospray Ionization Mass Spectrometry for Molecular Analysis of Secondary Organic Aerosol
Filter-based thermal desorption (F-TD) techniques, such as the filter inlet for gases and aerosols, are widely employed to investigate the molecular composition and physicochemical properties of secondary organic aerosol (SOA). Here, we introduce an enhanced capability of F-TD through the combination of a customized F-TD inlet with chemical ionization mass spectrometry (CIMS) and ultraperformance liquid chromatography/electrospray ionization mass spectrometry (UPLC/ESI-MS). The utility of F-TD/CIMS + UPLC/ESI-MS is demonstrated by application to α-pinene ozonolysis SOA for which increased filter aerosol mass loading is shown to slow the evaporation rates of deposited compounds. Evidence for oligomer decomposition producing multimode F-TD/CIMS thermograms is provided by the measurement of the mass fraction remaining of monomeric and dimeric α-pinene oxidation products on the filter via UPLC/ESI-MS. In situ evaporation of aerosol particles suggests that α-pinene-derived hydroperoxides are thermally labile; thus, analysis of particle-phase (hydro)peroxides via F-TD may not be appropriate. A synthesized pinene-derived dimer ester (CââHââOâ
) is found to be thermally stable up to 200 °C, whereas particle-phase dimers (CââHââOâ
) are observed to form during F-TD analysis via thermally induced condensation of synthesized pinene-derived alcohols and diacids. The complementary F-TD/CIMS + UPLC/ESI-MS method offers previously inaccessible insight into the molecular composition and thermal desorption behavior of SOA that both clarifies and expands on analysis via traditional F-TD techniques
Coupling Filter-Based Thermal Desorption Chemical Ionization Mass Spectrometry with Liquid Chromatography/Electrospray Ionization Mass Spectrometry for Molecular Analysis of Secondary Organic Aerosol
Filter-based thermal desorption (F-TD) techniques, such as the filter inlet for gases and aerosols, are widely employed to investigate the molecular composition and physicochemical properties of secondary organic aerosol (SOA). Here, we introduce an enhanced capability of F-TD through the combination of a customized F-TD inlet with chemical ionization mass spectrometry (CIMS) and ultraperformance liquid chromatography/electrospray ionization mass spectrometry (UPLC/ESI-MS). The utility of F-TD/CIMS + UPLC/ESI-MS is demonstrated by application to α-pinene ozonolysis SOA for which increased filter aerosol mass loading is shown to slow the evaporation rates of deposited compounds. Evidence for oligomer decomposition producing multimode F-TD/CIMS thermograms is provided by the measurement of the mass fraction remaining of monomeric and dimeric α-pinene oxidation products on the filter via UPLC/ESI-MS. In situ evaporation of aerosol particles suggests that α-pinene-derived hydroperoxides are thermally labile; thus, analysis of particle-phase (hydro)peroxides via F-TD may not be appropriate. A synthesized pinene-derived dimer ester (CââHââOâ
) is found to be thermally stable up to 200 °C, whereas particle-phase dimers (CââHââOâ
) are observed to form during F-TD analysis via thermally induced condensation of synthesized pinene-derived alcohols and diacids. The complementary F-TD/CIMS + UPLC/ESI-MS method offers previously inaccessible insight into the molecular composition and thermal desorption behavior of SOA that both clarifies and expands on analysis via traditional F-TD techniques
Synergistic O_3 + OH oxidation pathway to extremely low-volatility dimers revealed in ÎČ-pinene secondary organic aerosol
Dimeric compounds contribute significantly to the formation and growth of atmospheric secondary organic aerosol (SOA) derived from monoterpene oxidation. However, the mechanisms of dimer production, in particular the relevance of gas- vs. particle-phase chemistry, remain unclear. Here, through a combination of mass spectrometric, chromatographic, and synthetic techniques, we identify a suite of dimeric compounds (C_(15â19)H_(24â32)O_(5â11)) formed from concerted O3 and OH oxidation of ÎČ-pinene (i.e., accretion of O_3- and OH-derived products/intermediates). These dimers account for an appreciable fraction (5.9â25.4%) of the ÎČ-pinene SOA mass and are designated as extremely low-volatility organic compounds. Certain dimers, characterized as covalent dimer esters, are conclusively shown to form through heterogeneous chemistry, while evidence of dimer production via gas-phase reactions is also presented. The formation of dimers through synergistic O_3 + OH oxidation represents a potentially significant, heretofore-unidentified source of low-volatility monoterpene SOA. This reactivity also suggests that the current treatment of SOA formation as a sum of products originating from the isolated oxidation of individual precursors fails to accurately reflect the complexity of oxidation pathways at play in the real atmosphere. Accounting for the role of synergistic oxidation in ambient SOA formation could help to resolve the discrepancy between the measured atmospheric burden of SOA and that predicted by regional air quality and global climate models
Rapid Aqueous-Phase Hydrolysis of Ester Hydroperoxides Arising from Criegee Intermediates and Organic Acids
Stabilized Criegee intermediates react with organic acids in the gas phase and at the airâwater interface to form a class of ester hydroperoxides, α-acyloxyalkyl hydroperoxides (αAAHPs). A number of recent studies have proposed the importance of αAAHPs to the formation and growth of secondary organic aerosol (SOA). The chemistry of αAAHPs has not been investigated due to a lack of commercially available chemical standards. In this work, the behavior of αAAHPs in condensed phases is investigated for the first time. Experiments were performed with two synthesized αAAHP species. αAAHPs decomposed rapidly in the aqueous phase, with the rate highly dependent on the solvent, temperature, solution pH, and other compounds present in the solution. The measured 1st-order decomposition rate coefficient varied between 10^(â3) and 10^(â5) s^(â1) under the conditions examined in this work. Elucidation of the reaction mechanism is complicated by byproducts arising from the synthetic procedure, but observations are consistent with a base-catalyzed hydrolysis of αAAHPs. The rapid hydrolysis of αAAHPs observed in this work implies their short lifetimes in ambient cloud and fog waters. Decomposition of αAAHPs likely gives rise to smaller peroxides, such as H_2O_2. The loss of αAAHPs is also relevant to filter extraction, which is commonly practiced in laboratory experiments, potentially explaining contradictory results reported in the existing literature regarding the importance of αAAHPs in SOA
Characterization of aerosol hygroscopicity over the Northeast Pacific Ocean: Impacts on prediction of CCN and stratocumulus cloud droplet number concentrations
During the Marine Aerosol Cloud and Wildfire Study (MACAWS) in June and July of 2018, aerosol composition and cloud condensation nuclei (CCN) properties were measured over the N.E. Pacific to characterize the influence of aerosol hygroscopicity on predictions of ambient CCN and stratocumulus cloud droplet number concentrations (CDNC). Three vertical regions were characterized, corresponding to the marine boundary layer (MBL), an aboveâcloud organic aerosol layer (ACâOAL), and the free troposphere (FT) above the ACâOAL. The aerosol hygroscopicity parameter (Îș) was calculated from CCN measurements (Îș_(CCN)) and bulk aerosol mass spectrometer (AMS) measurements (Îș_(AMS)). Within the MBL, measured hygroscopicities varied between values typical of both continental environments (~0.2) and remote marine locations (~0.7). For most flights, CCN closure was achieved within 20% in the MBL. For five of the seven flights, assuming a constant aerosol size distribution produced similar or better CCN closure than assuming a constant âmarineâ hygroscopicity (Îș = 0.72). An aerosolâcloud parcel model was used to characterize the sensitivity of predicted stratocumulus CDNC to aerosol hygroscopicity, size distribution properties, and updraft velocity. Average CDNC sensitivity to accumulation mode aerosol hygroscopicity is 39% as large as the sensitivity to the geometric median diameter in this environment. Simulations suggest CDNC sensitivity to hygroscopicity is largest in marine stratocumulus with low updraft velocities (0.6 m sâ»Âč), where hygroscopic properties of the Aitken mode dominate hygroscopicity sensitivity
Characterization of aerosol hygroscopicity over the Northeast Pacific Ocean: Impacts on prediction of CCN and stratocumulus cloud droplet number concentrations
During the Marine Aerosol Cloud and Wildfire Study (MACAWS) in June and July of 2018, aerosol composition and cloud condensation nuclei (CCN) properties were measured over the N.E. Pacific to characterize the influence of aerosol hygroscopicity on predictions of ambient CCN and stratocumulus cloud droplet number concentrations (CDNC). Three vertical regions were characterized, corresponding to the marine boundary layer (MBL), an aboveâcloud organic aerosol layer (ACâOAL), and the free troposphere (FT) above the ACâOAL. The aerosol hygroscopicity parameter (Îș) was calculated from CCN measurements (Îș_(CCN)) and bulk aerosol mass spectrometer (AMS) measurements (Îș_(AMS)). Within the MBL, measured hygroscopicities varied between values typical of both continental environments (~0.2) and remote marine locations (~0.7). For most flights, CCN closure was achieved within 20% in the MBL. For five of the seven flights, assuming a constant aerosol size distribution produced similar or better CCN closure than assuming a constant âmarineâ hygroscopicity (Îș = 0.72). An aerosolâcloud parcel model was used to characterize the sensitivity of predicted stratocumulus CDNC to aerosol hygroscopicity, size distribution properties, and updraft velocity. Average CDNC sensitivity to accumulation mode aerosol hygroscopicity is 39% as large as the sensitivity to the geometric median diameter in this environment. Simulations suggest CDNC sensitivity to hygroscopicity is largest in marine stratocumulus with low updraft velocities (0.6 m sâ»Âč), where hygroscopic properties of the Aitken mode dominate hygroscopicity sensitivity
Probing the OH Oxidation of Pinonic Acid at the Air-Water Interface Using Field-Induced Droplet Ionization Mass Spectrometry (FIDI-MS)
Gas and aqueous phases are essential media for atmospheric chemistry and aerosol formation. Numerous studies have focused on aqueous-phase reactions as well as coupled gas/aqueous-phase mass transport and reaction. Few studies have directly addressed processes occurring at the airâwater interface, especially involving surface-active compounds. We report here the application of field-induced droplet ionization mass spectrometry (FIDI-MS) to chemical reactions occurring at the atmospheric airâwater interface. We determine the airâwater interfacial OH radical reaction rate constants for sodium dodecyl sulfate (SDS), a common surfactant, and pinonic acid (PA), a surface-active species and proxy for biogenic atmospheric oxidation products, as 2.87 Ă 10^(â8) and 9.38 Ă 10^(â8) cm^2 molec^(â1) s^(â1), respectively. In support of the experimental data, a comprehensive gas-surface-aqueous multiphase transport and reaction model of general applicability to atmospheric interfacial processes is developed. Through application of the model, PA is shown to be oxidized exclusively at the airâwater interface of droplets with a diameter of 5 ÎŒm under typical ambient OH levels. In the absence of interfacial reaction, aqueous- rather than gas-phase oxidation is the major PA sink. We demonstrate the critical importance of airâwater interfacial chemistry in determining the fate of surface-active species
- âŠ