138 research outputs found

    Robust Quasi-LPV Controller Design via Integral Quadratic Constraint Analysis

    Get PDF
    Reduced cost of sensors and increased computing power is enabling the development and implementation of control systems that can simultaneously regulate multiple variables and handle conflicting objectives while maintaining stringent performance objectives. To make this a reality, practical analysis and design tools must be developed that allow the designer to trade-off conflicting objectives and guarantee performance in the presence of uncertain system dynamics, an uncertain environment, and over a wide range of operating conditions. As a first step towards this goal, we organize and streamline a promising robust control approach, Robust Linear Parameter Varying control, which integrates three fields of control theory: Integral Quadratic Constraints (IQC) to characterize uncertainty and nonlinearities, Linear Parameter Varying systems (LPV) that formalizes gain-scheduling, and convex optimization to solve the resulting robust control Linear Matrix Inequalities (LMI). To demonstrate the potential of this approach, it was applied to the design of a robust linear parametrically varying controller for an ecosystem with nonlinear predator-prey-hunter dynamics

    An exploration of group process consultation and experiences of working with a child presenting with challenging behaviour in Key Stage 1

    Get PDF
    Staff that manage students presenting with challenging behaviour are thought to experience higher levels of burnout and difficulties regulating negative reactions to students (Fiorilli, Albanese, Gabola and Pepe, 2017). The ability to regulate emotions in a professional capacity and portray emotions contrary to what is felt has been theorised by Hochschild (1983) as emotional labour, and is thought to be prevalent within the teaching profession (Kinman, Wray and Strange, 2011; Edwards, 2013). In order to counter the negative impact of emotional labour, researchers have suggested a reference group be created, to provide a reflective space for teachers to better understand how pupil behaviour impacts on their own emotions (Miller, 2003, Hargreaves, 2000). Group process consultation research has identified it as useful for staff to reflect upon their practice, the emotional impact of their role and develop additional behaviour strategies (Nolan and Moreland, 2014; Stringer and Hayes, 2016; Davison and Duffy, 2017). This research explored group process consultation sessions as guided by Farouk (2004). Weekly consultation sessions were held during school hours for a group of staff that worked with a child presenting with challenging behaviour in Key Stage (KS1), consisting of the class teacher, teaching assistant, lunchtime teaching assistant and school SENCo. Semi structured interviews were undertaken to establish staff membersā€™ experiences of working with a child presenting with challenging behaviour and of their participation in group process consultation. Transcripts were analysed using Interpretative Phenomenological Analysis (IPA) resulting in two master themes for each research question. The groupā€™s experiences of working with the focus student reflected an importance in taking a professional approach that was in harmony with participantsā€™ morals and values, as summarised by the themes ā€˜guided by values, pressured by systemsā€™ and ā€˜responsibility of advocacyā€™. Participantsā€™ experiences of group consultation incorporated two master themes of ā€˜space for reflectionā€™ and ā€˜empowered teamā€™. The implications for further research and practice are discussed

    Development of a bioinformatics framework for identification and validation of genomic biomarkers and key immunopathology processes and controllers in infectious and non-infectious severe inflammatory response syndrome

    Get PDF
    Sepsis is defined as dysregulated host response caused by systemic infection, leading to organ failure. It is a life-threatening condition, often requiring admission to an intensive care unit (ICU). The causative agents and processes involved are multifactorial but are characterized by an overarching inflammatory response, sharing elements in common with severe inflammatory response syndrome (SIRS) of non-infectious origin. Sepsis presents with a range of pathophysiological and genetic features which make clinical differentiation from SIRS very challenging. This may reflect a poor understanding of the key gene inter-activities and/or pathway associations underlying these disease processes. Improved understanding is critical for early differential recognition of sepsis and SIRS and to improve patient management and clinical outcomes. Judicious selection of gene biomarkers suitable for development of diagnostic tests/testing could make differentiation of sepsis and SIRS feasible. Here we describe a methodologic framework for the identification and validation of biomarkers in SIRS, sepsis and septic shock patients, using a 2-tier gene screening, artificial neural network (ANN) data mining technique, using previously published gene expression datasets. Eight key hub markers have been identified which may delineate distinct, core disease processes and which show potential for informing underlying immunological and pathological processes and thus patient stratification and treatment. These do not show sufficient fold change differences between the different disease states to be useful as primary diagnostic biomarkers, but are instrumental in identifying candidate pathways and other associated biomarkers for further exploration

    Whole genome protein microarrays for serum profiling of immunodominant antigens of Bacillus anthracis

    No full text
    &lt;p&gt;A commercial Bacillus anthracis (Anthrax) whole genome protein microarray has been used to identify immunogenic Anthrax proteins (IAP) using sera from groups of donors with (a) confirmed B. anthracis naturally acquired cutaneous infection, (b) confirmed B. anthracis intravenous drug use-acquired infection, (c) occupational exposure in a wool-sorters factory, (d) humans and rabbits vaccinated with the UK Anthrax protein vaccine and compared to naĆÆve unexposed controls. Anti-IAP responses were observed for both IgG and IgA in the challenged groups; however the anti-IAP IgG response was more evident in the vaccinated group and the anti-IAP IgA response more evident in the B. anthracis-infected groups. Infected individuals appeared somewhat suppressed for their general IgG response, compared with other challenged groups. Immunogenic protein antigens were identified in all groups, some of which were shared between groups whilst others were specific for individual groups. The toxin proteins were immunodominant in all vaccinated, infected or other challenged groups. However, a number of other chromosomally-located and plasmid encoded open reading frame proteins were also recognized by infected or exposed groups in comparison to controls. Some of these antigens e.g., BA4182 are not recognized by vaccinated individuals, suggesting that there are proteins more specifically expressed by live Anthrax spores in vivo that are not currently found in the UK licensed Anthrax Vaccine (AVP). These may perhaps be preferentially expressed during infection and represent expression of alternative pathways in the B. anthracis &quot;infectome.&quot; These may make highly attractive candidates for diagnostic and vaccine biomarker development as they may be more specifically associated with the infectious phase of the pathogen. A number of B. anthracis small hypothetical protein targets have been synthesized, tested in mouse immunogenicity studies and validated in parallel using human sera from the same study.&lt;/p&gt;</p

    Development and Assessment of a Diagnostic DNA Oligonucleotide Microarray for Detection and Typing of Meningitis-Associated Bacterial Species.

    Get PDF
    Meningitis is commonly caused by infection with a variety of bacterial or viral pathogens. Acute bacterial meningitis (ABM) can cause severe disease, which can progress rapidly to a critical life-threatening condition. Rapid diagnosis of ABM is critical, as this is most commonly associated with severe sequelae with associated high mortality and morbidity rates compared to viral meningitis, which is less severe and self-limiting. We have designed a microarray for detection and diagnosis of ABM. This has been validated using randomly amplified DNA targets (RADT), comparing buffers with or without formamide, in glass slide format or on the Alere ArrayTubeTM (Alere Technologies GmbH) microarray platform. Pathogen-specific signals were observed using purified bacterial nucleic acids and to a lesser extent using patient cerebral spinal fluid (CSF) samples, with some technical issues observed using RADT and glass slides. Repurposing the array onto the Alere ArrayTubeTM platform and using a targeted amplification system increased specific and reduced nonspecific hybridization signals using both pathogen nucleic and patient CSF DNA targets, better revealing pathogen-specific signals although sensitivity was still reduced in the latter. This diagnostic microarray is useful as a laboratory diagnostic tool for species and strain designation for ABM, rather than for primary diagnosis

    Evaluation of Host Protein Biomarkers by ELISA From Whole Lysed Peripheral Blood for Development of Diagnostic Tests for Active Tuberculosis

    Get PDF
    Tuberculosis (TB) remains a significant global health crisis and the number one cause of death for an infectious disease. The health consequences in high-burden countries are significant. Barriers to TB control and eradication are in part caused by difficulties in diagnosis. Improvements in diagnosis are required for organisations like the World Health Organisation (WHO) to meet their ambitious target of reducing the incidence of TB by 50% by the year 2025, which has become hard to reach due to the COVID-19 pandemic. Development of new tests for TB are key priorities of the WHO, as defined in their 2014 report for target product profiles (TPPs). Rapid triage and biomarker-based confirmatory tests would greatly enhance the diagnostic capability for identifying and diagnosing TB-infected individuals. Protein-based test methods e.g. lateral flow devices (LFDs) have a significant advantage over other technologies with regard to assay turnaround time (minutes as opposed to hours) field-ability, ease of use by relatively untrained staff and without the need for supporting laboratory infrastructure. Here we evaluate the diagnostic performance of nine biomarkers from our previously published biomarker qPCR validation study; CALCOCO2, CD274, CD52, GBP1, IFIT3, IFITM3, SAMD9L, SNX10 and TMEM49, as protein targets assayed by ELISA. This preliminary evaluation study was conducted to quantify the level of biomarker protein expression across latent, extra-pulmonary or pulmonary TB groups and negative controls, collected across the UK and India, in whole lysed blood samples (WLB). We also investigated associative correlations between the biomarkers and assessed their suitability for ongoing diagnostic test development, using receiver operating characteristic/area under the curve (ROC) analyses, singly and in panel combinations. The top performing single biomarkers for pulmonary TB versus controls were CALCOCO2, SAMD9L, GBP1, IFITM3, IFIT3 and SNX10. TMEM49 was also significantly differentially expressed but downregulated in TB groups. CD52 expression was not highly differentially expressed across most of the groups but may provide additional patient stratification information and some limited use for incipient latent TB infection. These show therefore great potential for diagnostic test development either in minimal configuration panels for rapid triage or more complex formulations to capture the diversity of disease presentations

    Validation of Differentially Expressed Immune Biomarkers in Latent and Active Tuberculosis by Real-Time PCR

    Get PDF
    Tuberculosis (TB) remains a major global threat and diagnosis of active TB ((ATB) both extra-pulmonary (EPTB), pulmonary (PTB)) and latent TB (LTBI) infection remains challenging, particularly in high-burden countries which still rely heavily on conventional methods. Although molecular diagnostic methods are available, e.g., Cepheid GeneXpert, they are not universally available in all high TB burden countries. There is intense focus on immune biomarkers for use in TB diagnosis, which could provide alternative low-cost, rapid diagnostic solutions. In our previous gene expression studies, we identified peripheral blood leukocyte (PBL) mRNA biomarkers in a non-human primate TB aerosol-challenge model. Here, we describe a study to further validate select mRNA biomarkers from this prior study in new cohorts of patients and controls, as a prerequisite for further development. Whole blood mRNA was purified from ATB patients recruited in the UK and India, LTBI and two groups of controls from the UK (i) a low TB incidence region (CNTRLA) and (ii) individuals variably-domiciled in the UK and Asia ((CNTRLB), the latter TB high incidence regions). Seventy-two mRNA biomarker gene targets were analyzed by qPCR using the Roche Lightcycler 480 qPCR platform and data analyzed using GeneSpringā„¢ 14.9 bioinformatics software. Differential expression of fifty-three biomarkers was confirmed between MTB infected, LTBI groups and controls, seventeen of which were significant using analysis of variance (ANOVA): CALCOCO2, CD52, GBP1, GBP2, GBP5, HLA-B, IFIT3, IFITM3, IRF1, LOC400759 (GBP1P1), NCF1C, PF4V1, SAMD9L, S100A11, TAF10, TAPBP, and TRIM25. These were analyzed using receiver operating characteristic (ROC) curve analysis. Single biomarkers and biomarker combinations were further assessed using simple arithmetic algorithms. Minimal combination biomarker panels were delineated for primary diagnosis of ATB (both PTB and EPTB), LTBI and identifying LTBI individuals at high risk of progression which showed good performance characteristics. These were assessed for suitability for progression against the standards for new TB diagnostic tests delineated in the published World Health Organization (WHO) technology product profiles (TPPs)

    Multiple small RNAs identified in Mycobacterium bovis BCG are also expressed in Mycobacterium tuberculosis and Mycobacterium smegmatis

    Get PDF
    Tuberculosis (TB) is a major global health problem, infecting millions of people each year. The causative agent of TB, Mycobacterium tuberculosis, is one of the worldā€™s most ancient and successful pathogens. However, until recently, no work on small regulatory RNAs had been performed in this organism. Regulatory RNAs are found in all three domains of life, and have already been shown to regulate virulence in well-known pathogens, such as Staphylococcus aureus and Vibrio cholera. Here we report the discovery of 34 novel small RNAs (sRNAs) in the TB-complex M. bovis BCG, using a combination of experimental and computational approaches. Putative homologues of many of these sRNAs were also identified in M. tuberculosis and/or M. smegmatis. Those sRNAs that are also expressed in the non-pathogenic M. smegmatis could be functioning to regulate conserved cellular functions. In contrast, those sRNAs identified specifically in M. tuberculosis could be functioning in mediation of virulence, thus rendering them potential targets for novel antimycobacterials. Various features and regulatory aspects of some of these sRNAs are discussed

    Experimental arthritis induced by a clinical Mycoplasma fermentans isolate

    Get PDF
    BACKGROUND: Mycoplasma fermentans has been associated with rheumatoid arthritis. Recently, it was detected in the joints and blood of patients with rheumatoid arthritis, but it is not clear yet how the bacteria enter the body and reach the joints. The purpose of this study was to determine the ability of M. fermentans to induce experimental arthritis in rabbits following inoculation of the bacteria in the trachea and knee joints. METHODS: P-140 and PG-18 strains were each injected in the knee joints of 14 rabbits in order to evaluate and compare their arthritogenicity. P-140 was also injected in the trachea of 14 rabbits in order to test the ability of the bacteria to reach the joints and induce arthritis. RESULTS: M. fermentans produced an acute arthritis in rabbits. Joint swelling appeared first in rabbits injected with P-140, which caused a more severe arthritis than PG-18. Both strains were able to migrate to the uninoculated knee joints and they were detected viable in the joints all along the duration of the experiment. Changes in the synovial tissue were more severe by the end of the experiment and characterized by the infiltration of neutrophils and substitution of adipose tissue by connective tissue. Rabbits intracheally injected with P-140 showed induced arthritis and the bacteria could be isolated from lungs, blood, heart, kidney, spleen, brain and joints. CONCLUSION: M. fermentans induced arthritis regardless of the inoculation route. These findings may help explain why mycoplasmas are commonly isolated from the joints of rheumatic patients
    • ā€¦
    corecore