208 research outputs found

    Pattern equivariant functions and cohomology

    Full text link
    The cohomology of a tiling or a point pattern has originally been defined via the construction of the hull or the groupoid associated with the tiling or the pattern. Here we present a construction which is more direct and therefore easier accessible. It is based on generalizing the notion of equivariance from lattices to point patterns of finite local complexity.Comment: 8 pages including 2 figure

    Tiling Spaces are Inverse Limits

    Full text link
    Let M be an arbitrary Riemannian homogeneous space, and let Omega be a space of tilings of M, with finite local complexity (relative to some symmetry group Gamma) and closed in the natural topology. Then Omega is the inverse limit of a sequence of compact finite-dimensional branched manifolds. The branched manifolds are (finite) unions of cells, constructed from the tiles themselves and the group Gamma. This result extends previous results of Anderson and Putnam, of Ormes, Radin and Sadun, of Bellissard, Benedetti and Gambaudo, and of G\"ahler. In particular, the construction in this paper is a natural generalization of G\"ahler's.Comment: Latex, 6 pages, including one embedded figur

    Spectral flow and level spacing of edge states for quantum Hall hamiltonians

    Full text link
    We consider a non relativistic particle on the surface of a semi-infinite cylinder of circumference LL submitted to a perpendicular magnetic field of strength BB and to the potential of impurities of maximal amplitude ww. This model is of importance in the context of the integer quantum Hall effect. In the regime of strong magnetic field or weak disorder B>>wB>>w it is known that there are chiral edge states, which are localised within a few magnetic lengths close to, and extended along the boundary of the cylinder, and whose energy levels lie in the gaps of the bulk system. These energy levels have a spectral flow, uniform in LL, as a function of a magnetic flux which threads the cylinder along its axis. Through a detailed study of this spectral flow we prove that the spacing between two consecutive levels of edge states is bounded below by 2παL12\pi\alpha L^{-1} with α>0\alpha>0, independent of LL, and of the configuration of impurities. This implies that the level repulsion of the chiral edge states is much stronger than that of extended states in the usual Anderson model and their statistics cannot obey one of the Gaussian ensembles. Our analysis uses the notion of relative index between two projections and indicates that the level repulsion is connected to topological aspects of quantum Hall systems.Comment: 22 pages, no figure

    Scattering theory for lattice operators in dimension d3d\geq 3

    Full text link
    This paper analyzes the scattering theory for periodic tight-binding Hamiltonians perturbed by a finite range impurity. The classical energy gradient flow is used to construct a conjugate (or dilation) operator to the unperturbed Hamiltonian. For dimension d3d\geq 3 the wave operator is given by an explicit formula in terms of this dilation operator, the free resolvent and the perturbation. From this formula the scattering and time delay operators can be read off. Using the index theorem approach, a Levinson theorem is proved which also holds in presence of embedded eigenvalues and threshold singularities.Comment: Minor errors and misprints corrected; new result on absense of embedded eigenvalues for potential scattering; to appear in RM

    Intermixture of extended edge and localized bulk energy levels in macroscopic Hall systems

    Full text link
    We study the spectrum of a random Schroedinger operator for an electron submitted to a magnetic field in a finite but macroscopic two dimensional system of linear dimensions equal to L. The y direction is periodic and in the x direction the electron is confined by two smooth increasing boundary potentials. The eigenvalues of the Hamiltonian are classified according to their associated quantum mechanical current in the y direction. Here we look at an interval of energies inside the first Landau band of the random operator for the infinite plane. In this energy interval, with large probability, there exist O(L) eigenvalues with positive or negative currents of O(1). Between each of these there exist O(L^2) eigenvalues with infinitesimal current O(exp(-cB(log L)^2)). We explain what is the relevance of this analysis to the integer quantum Hall effect.Comment: 29 pages, no figure

    Tiling groupoids and Bratteli diagrams

    Full text link
    Let T be an aperiodic and repetitive tiling of R^d with finite local complexity. Let O be its tiling space with canonical transversal X. The tiling equivalence relation R_X is the set of pairs of tilings in X which are translates of each others, with a certain (etale) topology. In this paper R_X is reconstructed as a generalized "tail equivalence" on a Bratteli diagram, with its standard AF-relation as a subequivalence relation. Using a generalization of the Anderson-Putnam complex, O is identified with the inverse limit of a sequence of finite CW-complexes. A Bratteli diagram B is built from this sequence, and its set of infinite paths dB is homeomorphic to X. The diagram B is endowed with a horizontal structure: additional edges that encode the adjacencies of patches in T. This allows to define an etale equivalence relation R_B on dB which is homeomorphic to R_X, and contains the AF-relation of "tail equivalence".Comment: 34 pages, 4 figure

    Hopf Categories

    Full text link
    We introduce Hopf categories enriched over braided monoidal categories. The notion is linked to several recently developed notions in Hopf algebra theory, such as Hopf group (co)algebras, weak Hopf algebras and duoidal categories. We generalize the fundamental theorem for Hopf modules and some of its applications to Hopf categories.Comment: 47 pages; final version to appear in Algebras and Representation Theor

    Continued Fractions and Fermionic Representations for Characters of M(p,p') minimal models

    Full text link
    We present fermionic sum representations of the characters χr,s(p,p)\chi^{(p,p')}_{r,s} of the minimal M(p,p)M(p,p') models for all relatively prime integers p>pp'>p for some allowed values of rr and ss. Our starting point is binomial (q-binomial) identities derived from a truncation of the state counting equations of the XXZ spin 12{1\over 2} chain of anisotropy Δ=cos(πpp)-\Delta=-\cos(\pi{p\over p'}). We use the Takahashi-Suzuki method to express the allowed values of rr (and ss) in terms of the continued fraction decomposition of {pp}\{{p'\over p}\} (and pp{p\over p'}) where {x}\{x\} stands for the fractional part of x.x. These values are, in fact, the dimensions of the hermitian irreducible representations of SUq(2)SU_{q_{-}}(2) (and SUq+(2)SU_{q_{+}}(2)) with q=exp(iπ{pp})q_{-}=\exp (i \pi \{{p'\over p}\}) (and q+=exp(iπpp)).q_{+}=\exp ( i \pi {p\over p'})). We also establish the duality relation M(p,p)M(pp,p)M(p,p')\leftrightarrow M(p'-p,p') and discuss the action of the Andrews-Bailey transformation in the space of minimal models. Many new identities of the Rogers-Ramanujan type are presented.Comment: Several references, one further explicit result and several discussion remarks adde

    Arrestin recruitment to dopamine D2 receptor mediates locomotion but not incentive motivation

    Get PDF
    The dopamine (DA) D2 receptor (D2R) is an important target for the treatment of neuropsychiatric disorders such as schizophrenia and Parkinson's disease. However, the development of improved therapeutic strategies has been hampered by our incomplete understanding of this receptor's downstream signaling processes in vivo and how these relate to the desired and undesired effects of drugs. D2R is a G protein-coupled receptor (GPCR) that activates G protein-dependent as well as non-canonical arrestin-dependent signaling pathways. Whether these effector pathways act alone or in concert to facilitate specific D2R-dependent behaviors is unclear. Here, we report on the development of a D2R mutant that recruits arrestin but is devoid of G protein activity. When expressed virally in "indirect pathway" medium spiny neurons (iMSNs) in the ventral striatum of D2R knockout mice, this mutant restored basal locomotor activity and cocaine-induced locomotor activity in a manner indistinguishable from wild-type D2R, indicating that arrestin recruitment can drive locomotion in the absence of D2R-mediated G protein signaling. In contrast, incentive motivation was enhanced only by wild-type D2R, signifying a dissociation in the mechanisms that underlie distinct D2R-dependent behaviors, and opening the door to more targeted therapeutics

    The LKB1-salt-inducible kinase pathway functions as a key gluconeogenic suppressor in the liver

    Get PDF
    LKB1 is a master kinase that regulates metabolism and growth through adenosine monophosphate-activated protein kinase (AMPK) and 12 other closely related kinases. Liver-specific ablation of LKB1 causes increased glucose production in hepatocytes in vitro and hyperglycaemia in fasting mice in vivo. Here we report that the salt-inducible kinases (SIK1, 2 and 3), members of the AMPK-related kinase family, play a key role as gluconeogenic suppressors downstream of LKB1 in the liver. The selective SIK inhibitor HG-9-91-01 promotes dephosphorylation of transcriptional co-activators CRTC2/3 resulting in enhanced gluconeogenic gene expression and glucose production in hepatocytes, an effect that is abolished when an HG-9-91-01-insensitive mutant SIK is introduced or LKB1 is ablated. Although SIK2 was proposed as a key regulator of insulin-mediated suppression of gluconeogenesis, we provide genetic evidence that liver-specific ablation of SIK2 alone has no effect on gluconeogenesis and insulin does not modulate SIK2 phosphorylation or activity. Collectively, we demonstrate that the LKB1-SIK pathway functions as a key gluconeogenic gatekeeper in the liver
    corecore