2 research outputs found

    Animal Perception of Seasonal Thresholds: Changes in Elephant Movement in Relation to Rainfall Patterns

    Get PDF
    Background: The identification of temporal thresholds or shifts in animal movement informs ecologists of changes in an animal\u2019s behaviour, which contributes to an understanding of species\u2019 responses in different environments. In African savannas, rainfall, temperature and primary productivity influence the movements of large herbivores and drive changes at different scales. Here, we developed a novel approach to define seasonal shifts in movement behaviour by examining the movements of a highly mobile herbivore (elephant; Loxodonta africana), in relation to local and regional rainfall patterns. Methodology/Principal Findings: We used speed to determine movement changes of between 8 and 14 GPS-collared elephant cows, grouped into five spatial clusters, in Kruger National Park, South Africa. To detect broad-scale patterns of movement, we ran a three-year daily time-series model for each individual (2007\u20132009). Piecewise regression models provided the best fit for elephant movement, which exhibited a segmented, waveform pattern over time. Major breakpoints in speed occurred at the end of the dry and wet seasons of each year. During the dry season, female elephant are constrained by limited forage and thus the distances they cover are shorter and less variable. Despite the inter-annual variability of rainfall, speed breakpoints were strongly correlated with both local and regional rainfall breakpoints across all three years. Thus, at a multi-year scale, rainfall patterns significantly affect the movements of elephant. The variability of both speed and rainfall breakpoints across different years highlights the need for an objective definition of seasonal boundaries. Conclusions/Significance: By using objective criteria to determine behavioural shifts, we identified a biologically meaningful indicator of major changes in animal behaviour in different years. We recommend the use of such criteria, from an animal\u2019s perspective, for delineating seasons or other extrinsic shifts in ecological studies, rather than arbitrarily fixed definitions based on convention or common practice

    Short-beaked echidna (Tachyglossus aculeatus) home range at Fowlers Gap Arid Zone Research Station, NSW

    Full text link
    Echidnas (Tachyglossus aculeatus) are found Australia-wide and appear to be remarkably well-adapted to the arid zone, yet nearly all echidna research has been conducted in temperate, tropical and alpine zones. This study investigated the home range and movement of echidnas in western New South Wales. Radio telemetry tracking was used to locate the echidnas daily during the study period (March-May 2018, November 2018, March-May 2019 and August 2019); the observed home range was 1.47± 1.21km2. This is over twice the reported home range of temperate environments (<0.65km2), suggesting that echidnas exhibit larger home ranges in arid zones. The home range of individual echidnas ranged from 0.02km2 to 3.56km2. Echidnas exhibited a small degree of overlap (6.6%± 19.8%) but this varied considerably between individuals (between 0 to 84.2% overlap.) Four out of the thirteen echidnas died during this study, likely due to the severe drought that occurred during the study. This study provides insight into the movement and home range of echidnas in arid zones, revealing that desert echidnas have large home ranges, probably dependent on the availability of resources
    corecore