578 research outputs found

    Optimising micro-hydroxyapatite reinforced poly(lactide acid) electrospun scaffolds for bone tissue engineering.

    Get PDF
    HA-mineralised composite electrospun scaffolds have been introduced for bone regeneration due to their ability to mimic both morphological features and chemical composition of natural bone ECM. Micro-sized HA is generally avoided in electrospinning due to its reduced bioactivity compared to nano-sized HA due to the lower surface area. However, the high surface area of nanoparticles provides a very high surface energy, leading to agglomeration. Thus, the probability of nanoparticles clumping leading to premature mechanical failure is higher than for microparticles at higher filler content. In this study, two micron-sized hydroxyapatites were investigated for electrospinning with PLA at various contents, namely spray dried HA (HA1) and sintered HA (HA2) particles to examine the effect of polymer concentration, filler type and filler concentration on the morphology of the scaffolds, in addition to the mechanical properties and bioactivity. SEM results showed that fibre diameter and surface roughness of 15 and 20 wt% PLA fibres were significantly affected by incorporation of either HA. The apatite precipitation rates for HA1 and HA2-filled scaffolds immersed in simulated body fluid (SBF) were similar, however, it was affected by the fibre diameter and the presence of HA particles on the fibre surface. Degradation rates of HA2-filled scaffolds in vitro over 14 days was lower than for HA1-filled scaffolds due to enhanced dispersion of HA2 within PLA matrix and reduced cavities in PLA/HA2 interface. Finally, increasing filler surface area led to enhanced thermal stability as it reduced thermal degradation of the polymer

    CGIHT: Conjugate Gradient Iterative Hard Thresholding\ud for Compressed Sensing and Matrix Completion

    Get PDF
    We introduce the Conjugate Gradient Iterative Hard Thresholding (CGIHT) family of algorithms for the efficient solution of constrained underdetermined linear systems of equations arising in compressed sensing, row sparse approximation, and matrix completion. CGIHT is designed to balance the low per iteration complexity of simple hard thresholding algorithms with the fast asymptotic convergence rate of employing the conjugate gradient method. We establish provable recovery guarantees and stability to noise for variants of CGIHT with sufficient conditions in terms of the restricted isometry constants of the sensing operators. Extensive empirical performance comparisons establish significant computational advantages for CGIHT both in terms of the size of problems which can be accurately approximated and in terms of overall computation time

    Conjugate Gradient Iterative Hard Thresholding:\ud Observed Noise Stability for Compressed Sensing

    Get PDF
    Conjugate Gradient Iterative Hard Thresholding (CGIHT) for compressed sensing combines the low per iteration complexity of fast greedy sparse approximation algorithms with the improved convergence rates of more complicated, projection based algorithms. This article shows that CGIHT is robust to\ud additive noise and is typically the fastest greedy algorithm in the presence of noise

    Functional trait plasticity diverges between sexes in African cichlids: A contribution toward ecological sexual dimorphism?

    Get PDF
    Phenotypic plasticity enables development to produce multiple phenotypes in response to environmental conditions. Plasticity driven variation has been suggested to play a key role in adaptive divergence, and plasticity itself can evolve. However, the interaction of plasticity with the multiple levels involved with adaptive divergence is less understood. For example, sexual dimorphism can contribute adaptive variation through ecological sexual dimorphism (ESD), but the contribution of plasticity to this phenomenon is unknown. Therefore, to determine the potential contribution of plasticity to ESD, we used the adaptive radiation of Malawi cichlids. Two mouthbrooding species (Labeotropheus fuelleborni and Tropheops "Red Cheek") with differences in foraging tactics underwent foraging experiments using benthic and limnetic treatments while accounting for sex. Plasticity in craniofacial shape and three functionally important traits were measured. Plasticity was shown, but without any sex-based differences in shape. However, for mechanical advantage traits of the mandible sex by diet interactions were found. This suggests that ESD, may be influenced by phenotypic plasticity that diverges between sexes. Given the involvement of the mandible in parental care in cichlids this may indicate that sexual divergence in plasticity may trade-off against maternal care tactics

    Effects of specimen variables and stress amplitude on the S-N analysis of two PMMA based bone cements

    Get PDF
    The fatigue performance of bone cement is influenced by the testing parameters. In previous in vitro fatigue studies, different testing conditions have been used leading to inconsistencies in the findings between the studies, and consequent uncertainties about the effects of testing specimen specifications and stress parameters. This study evaluates the role of specimen variables (namely; specimen cross-section shape, surface production method and cement composition) in a range of in vitro stress amplitudes (±12.5, ±15, ±20, ±30 MPa), using S-N (Wöhler) analysis. The two main findings are: while specimen cross-section configuration and fabrication method (specimen type) played a key role in controlling the fatigue longevity of the same cement, the stress amplitude was seen as the dominant controlling variable to affect the fatigue behaviour of different cements when using the same specimen type. Thus, considering the effect of specimen type, testing at high stress amplitudes should be treated with caution, particularly in tension-compression loading, to ensure fatigue failure occurs due to mechanical rather than thermal effects and thus models the in vivo behaviour

    Mechanical behaviour of degradable phosphate glass fibres and composites-a review

    Get PDF
    Biodegradable materials are potentially an advantageous alternative to the traditional metallic fracture fixation devices used in the reconstruction of bone tissue defects. This is due to the occurrence of stress shielding in the surrounding bone tissue that arises from the absence of mechanical stimulus to the regenerating bone due to the mismatch between the elastic modulus of bone and the metal implant. However although degradable polymers may alleviate such issues, these inert materials possess insufficient mechanical properties to be considered as a suitable alternative to current metallic devices at sites of sufficient mechanical loading. Phosphate based glasses are an advantageous group of materials for tissue regenerative applications due to their ability to completely degrade in vivo at highly controllable rates based on the specific glass composition. Furthermore the release of the glass's constituent ions can evoke a therapeutic stimulus in vivo (i.e. osteoinduction) whilst also generating a bioactive response. The processing of these materials into fibres subsequently allows them to act as reinforcing agents in degradable polymers to simultaneously increase its mechanical properties and enhance its in vivo response. However despite the various review articles relating to the compositional influences of different phosphate glass systems, there has been limited work summarising the mechanical properties of different phosphate based glass fibres and their subsequent incorporation as a reinforcing agent in degradable composite materials. As a result, this review article examines the compositional influences behind the development of different phosphate based glass fibre compositions intended as composite reinforcing agents along with an analysis of different potential composite configurations. This includes variations in the fibre content, matrix material and fibre architecture as well as other novel composites designs

    Relationship between fatigue parameters and fatigue crack growth in PMMA bone cement

    Get PDF
    Poly(methyl methacrylate) (PMMA) bone cement is used to anchor the majority of total joint replacements (TJRs). Many brands of cement are used, both with and without the addition of antibiotics to reduce the risk of infection. The present study involved determination of various parameters in tensile fatigue loading: 1) energy absorbed (U) vs number of loading cycles (N) and creep strain (ε) vs N, during fatigue tests on specimens of an antibiotic-containing cement (SmartSet GHV) and a plain cement (CMW1) and 2) crack length (a) vs fatigue loading cycles (N) and crack growth rate (da/dN) vs Mode I stress intensity factor range (ΔKI), during Fatigue Crack Propagation (FCP) tests. In the fatigue tests, four different sample types (round, machined; round, directly moulded; rectangular, machined, and rectangular, directly moulded) and tension-tension loading were used. In the FCP tests, compact tension specimens under tension-tension loading were used. It was found that there were limited effects of sample type, except at the highest stress levels, but that these two cements had different rates of crack propagation. These differences were reflected in the fracture surfaces with SmartSet GHV showing accumulation of opacifier around the particles and crack progression around the intial beads, while for CMW1 the opacifier was evenly distributed and the cracks went through the initial beads

    Biomechanics of Natural Fiber Green Composites as Internal Bone Plate rafted

    Get PDF
    The main purpose of this paper was to introduce a new series of green composites as a plate for bone fracture applications. These green composites offer many advantages over traditional composites and biocomposites based on synthetic polymers. In current work, the new green composites bone plate based on two types of biopolymers involves biopolymethylmethacrylate thermoplastic material and bioepoxy thermosetting material reinforced with randomly oriented corn natural fibers at different weight fractions (5, 10, 15, and 20%) were fabricated by hand lay-up technique. Four forms of green composites; treated and untreated corn biopolymethylmethacrylate groups A and B respectively, treated and untreated corn bioepoxy groups C and D respectively were investigated. The mechanical properties were tested (tensile, compression, and compact tension) under a flow of phosphate buffered saline PBS at 37 °C has been reported. The experimental results showed that the green composites group A have the best mechanical properties than other groups under PBS condition while the green composites group D have the weak mechanical properties due to plastization by immersion in PBS solution. Also, the analysis of femur bone fracture plates carried out by applying finite element method FEM using the ANSYS 16 software package

    Are Shell Strength Phenotypic Traits in Mussels Associated with Species Alone?

    Get PDF
    Mussels often hybridise to form the Mytilus species complex comprised of M. edulis and M. galloprovincialis as the main species cultivated in Europe and, where their geographical distribution overlaps, the species M. trossulus. It has been suggested that M. trossulus have a weaker shell than the UK native M. edulis and hybridisation reduces farmed mussel yields and overall fitness. Here, we investigate the hypothesised link between species and shell weakness, employing multi-locus genotyping combined with measurements of six different phenotypes indicative of shell strength (shell thickness, flexural strength, Young’s modulus, Vicker’s hardness, fracture toughness, calcite and aragonite crystallographic orientation). Historic evidence from shell strength studies assumed species designation based on geographical origin, single locus DNA marker or allozyme genetic techniques that are limited in their ability to discern hybrid individuals. Single nucleotide polymorphic markers have now been developed with the ability to better distinguish between the species of the complex and their hybrids. Our study indicates that shell strength phenotypic traits are less associated with species than previously thought. The application of techniques outlined in this study challenges the historic influence of M. trossulus hybridisation on mussel yields and opens up potential for the environment to determine mussel shell fitness.</jats:p
    • …
    corecore