35 research outputs found

    In Vitro Cell Models for Ophthalmic Drug Development Applications

    Get PDF
    © Sara Shafaie et al. 2016; Published by Mary Ann Liebert, Inc. This Open Access article is distributed under the terms of the Creative Commons License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.Tissue engineering is a rapidly expanding field that aims to establish feasible techniques to fabricate biologically equivalent replacements for diseased and damaged tissues/organs. Emerging from this prospect is the development of in vitro representations of organs for drug toxicity assessment. Due to the ever-increasing interest in ocular drug delivery as a route for administration as well as the rise of new ophthalmic therapeutics, there is a demand for physiologically accurate in vitro models of the eye to assess drug delivery and safety of new ocular medicines. This review summarizes current existing ocular models and highlights the important factors and limitations that need to be considered during their use.Peer reviewe

    Self-Healing Collagen-Based Hydrogel for Brain Injury Therapy

    Get PDF
    Hydrogels derived from biopolymers, also called biohydrogels, have shown potential for brain injury therapy due to their tunable physical, chemical, and biological properties. Among different biohydrogels, those made from collagen type I are very promising candidates for the reparation of nervous tissues due to its biocompatibility, noncytotoxic properties, injectability, and self-healing ability. Moreover, although collagen does not naturally occur in the brain, it has been demonstrated that collagen type I, which resides in the basal lamina of the subventricular zone in adults, supports neural cell attachment, axonal growth, and cell proliferation due to its intrinsic content of specific cell-signaling domains. This chapter summarizes the most relevant results obtained from both in vitro and in vivo studies using self-healing biohydrogels based on collagen type I as key component in the field of neuroregeneration.University of RegensburgUniversidad de La LagunaMinisterio de Ciencia, Innovación y Universidade
    corecore