38 research outputs found

    A framework for monitoring the safety of water services: from measurements to security

    Get PDF
    The sustainable developments goals (SDGs) introduced monitoring of drinking water quality to the international development agenda. At present, Escherichia coli are the primary measure by which we evaluate the safety of drinking water from an infectious disease perspective. Here, we propose and apply a framework to reflect on the purposes of and approaches to monitoring drinking water safety. To deliver SDG 6.1, universal access to safe drinking water, a new approach to monitoring is needed. At present, we rely heavily on single measures of E. coli contamination to meet a normative definition of safety. Achieving and sustaining universal access to safe drinking water will require monitoring that can inform decision making on whether services are managed to ensure safety and security of access

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF

    Agglutinated foraminifera (superfamily Hormosinacea) across the Indian margin oxygen minimum zone (Arabian Sea)

    No full text
    We present a semi-quantitative survey of ‘live’ (stained) and dead hormosinacean foraminifera at six sites (500–2,000 m water depth; bottom-water oxygen concentrations 0.007–2.43 ml L−1) across the Indian margin oxygen minimum zone (OMZ). Abundance of stained and dead specimens was highest at 800 m followed by 1,100 m, lowest at 2,000 m (stained) and 500 m (dead). The peak at 800 m possibly represents a release from oxygen stress combined with a rich food supply (‘edge effect’). We recognised 31 species (27 Reophax, 2 Hormosinella, 1 Hormosina and 1 Nodosinella) among the 605 stained and dead specimens; the majority (21) are apparently undescribed. Species richness was low at 2,000 m; within the OMZ, it was maximal at 1,100 m and minimal at 500 m for both stained and dead populations. Three species (R. agglutinatus, R. aff. bilocularis and R. dentaliniformis) occurred across the entire depth range. However, most species were either confined to the 2,000-m site or to one or more sites within the OMZ. Multivariate analysis of assemblage composition revealed that the 2,000-m site was distinct from shallower sites. Within the OMZ, the 900- and 1,100-m sites were the most similar, and the 500-m site the most distinct. Stained:dead test ratios were maximal at 500–835 m, perhaps reflecting enhanced preservation of cytoplasm at very low oxygen concentrations. At least two Reophax species are common to the Indian and Pakistan margin OMZ; one of these may be confined to the core of the Arabian Sea OMZ
    corecore