11 research outputs found

    HTLV-1 Tax Mediated Downregulation of miRNAs Associated with Chromatin Remodeling Factors in T Cells with Stably Integrated Viral Promoter

    Get PDF
    RNA interference (RNAi) is a natural cellular mechanism to silence gene expression and is predominantly mediated by microRNAs (miRNAs) that target messenger RNA. Viruses can manipulate the cellular processes necessary for their replication by targeting the host RNAi machinery. This study explores the effect of human T-cell leukemia virus type 1 (HTLV-1) transactivating protein Tax on the RNAi pathway in the context of a chromosomally integrated viral long terminal repeat (LTR) using a CD4+ T-cell line, Jurkat. Transcription factor profiling of the HTLV-1 LTR stably integrated T-cell clone transfected with Tax demonstrates increased activation of substrates and factors associated with chromatin remodeling complexes. Using a miRNA microarray and bioinformatics experimental approach, Tax was also shown to downregulate the expression of miRNAs associated with the translational regulation of factors required for chromatin remodeling. These observations were validated with selected miRNAs and an HTLV-1 infected T cells line, MT-2. miR-149 and miR-873 were found to be capable of directly targeting p300 and p/CAF, chromatin remodeling factors known to play critical role in HTLV-1 pathogenesis. Overall, these results are first in line establishing HTLV-1/Tax-miRNA-chromatin concept and open new avenues toward understanding retroviral latency and/or replication in a given cell type

    Equine placentitis is associated with a downregulation in myometrial progestin signaling

    No full text
    The current study aimed to elucidate the mechanisms underlying myometrial activation during equine placentitis related to progestogens and the progesterone receptor signaling pathways. Placentitis was induced via intracervical inoculation with Streptococcus equi ssp zooepidemicus in mares at approximately 290 days of gestation (placentitis group; n = 6) with uninoculated gestationally matched mares as controls (n = 4). Mares in the placentitis and control groups were euthanized, and myometrial samples were collected from two regions: region 1-parallel to active placentitis lesion with placental separation in placentitis group (P1) or caudal pole of the placenta in control group (C1); and region 2-parallel to apparently normal placenta without separation in placentitis group (P2) or uterine body in control group (C2). In the current study, SRD5A1 and AKR1C23, which encode for the key P4 metabolizing enzymes, were downregulated in P1 in comparison to C1, C2, and P2, and this was associated with a decline (P < 0.05) in 5 alpha DHP, allopregnanolone (3 alpha DHP), and 20 alpha DHP in P1 in comparison to C1. Further, myometrial expression of PR was downregulated (P < 0.05) in P1 in comparison to C1 and P2, and this was associated with activation of the inflammatory cascade as reflected by significant upregulation of IL-1 beta and IL-8 in P1 in comparison to C1, C2, and P2, and supported by increased tissue leukocytes in P1 in comparison to C1. In conclusion, equine placentitis is associated with a localized withdrawal of progestins and a downregulation of the PR in the myometrium concomitant with upregulation of inflammatory cytokines and subsequent myometrial activation

    Paternally expressed retrotransposon Gag-like 1 gene, RTL1, is one of the crucial elements for placental angiogenesis in horses

    No full text
    RTL1 (retrotransposon Gag-like 1) is an essential gene in the development of the human and murine placenta. Several fetal and placental abnormalities such as intrauterine growth restriction (IUGR) and hydrops conditions have been associated with altered expression of this gene. However, the function of RTL1 has not been identified. RTL1 is located on a highly conserved region in eutherian mammals. Therefore, the genetic and molecular analysis in horses could hold important implications for other species, including humans. Here, we demonstrated that RTL1 is paternally expressed and is localized within the endothelial cells of the equine (Equus caballus) chorioallantois. We developed an equine placental microvasculature primary cell culture and demonstrated that RTL1 knockdown leads to loss of the sprouting ability of these endothelial cells. We further demonstrated an association between abnormal expression of RTL1 and development of hydrallantois. Our data suggest that RTL1 may be essential for placental angiogenesis, and its abnormal expression can lead to placental insufficiency. This placental insufficiency could be the reason for IUGR and hydrops conditions reported in other species, including humans

    Respiratory Compensation Point during Incremental Exercise as Related to Hypoxic Ventilatory Chemosensitivity and Lactate Increase in Man.

    No full text
    corecore