3,472 research outputs found

    Two Dimensional Simulations of Pair-Instability Supernovae

    Full text link
    We present preliminary results from two dimensional numerical studies of pair instability supernova (PSN). We study nuclear burning, hydrodynamic instabilities and explosion of very massive stars. Use a new radiation-hydrodynamics code, CASTRO.Comment: Proceedings of "The First Stars and Galaxies: Challenges for the Next Decade", Austin, Texas, March 8-11, 2010. 2 pages, 1 figur

    Gas Dynamics of the Nickel-56 Decay Heating in Pair-Instability Supernovae

    Get PDF
    Very massive 140-260 Msun stars can die as highly-energetic pair-instability supernovae (PI SNe) with energies of up to 100 times those of core-collapse SNe that can completely destroy the star, leaving no compact remnant behind. These explosions can synthesize 0.1−300.1-30 Msun of radioactive Ni56, which can cause them to rebrighten at later times when photons due to Ni56 decay diffuse out of the ejecta. However, heat from the decay of such large masses of Ni56 could also drive important dynamical effects deep in the ejecta that are capable of mixing elements and affecting the observational signatures of these events. We have now investigated the dynamical effect of Ni56 heating on PI SN ejecta with high-resolution two-dimensional hydrodynamic simulations performed with the CASTRO code. We find that expansion of the hot Ni56 bubble forms a shell at the base of the silicon layer of the ejecta about 200 days after the explosion but that no hydrodynamical instabilities develop that would mix Ni56 with the Si/O-rich ejecta. However, while the dynamical effects of Ni56 heating may be weak they could affect the observational signatures of some PI SNe by diverting decay energy into internal expansion of the ejecta at the expense of rebrightening at later times.Comment: Accepted to ApJ, 14 page

    Cosmological Impact Of Population III Binaries

    Get PDF
    We present the results of the stellar feedback from Population III (Pop III) binaries by employing improved, more realistic Pop III evolutionary stellar models. To facilitate a meaningful comparison, we consider a fixed mass of 60 M-circle dot incorporated in Pop III stars, either contained in a single star, or split up in binary stars of 30 M-circle dot each or an asymmetric case of one 45 and one 15 M-circle dot star. Whereas the sizes of the resulting H II regions are comparable across all cases, the He III regions around binary stars are significantly smaller than that of the single star. Consequently, the He+ 1640 angstrom recombination line is expected to become much weaker. Supernova (SN) feedback exhibits great variety due to the uncertainty in possible explosion pathways. If at least one of the component stars dies as a hypernova about 10 times more energetic than conventional core-collapse SNe, the gas inside the host minihalo is effectively blown out, chemically enriching the intergalactic medium (IGM) to an average metallicity of 10(-4)-10(-3) Z(circle dot), out to similar to 2 kpc. The single star, however, is more likely to collapse into a black hole, accompanied by at most very weak explosions. The effectiveness of early chemical enrichment would thus be significantly reduced, in contrast to. the lower mass binary stars, where at least one component is likely to contribute to heavy element production and dispersal. Important new feedback physics is also introduced if close binaries can form high-mass X-ray binaries, leading to the pre-heating and -ionization of the IGM beyond the extent of the stellar H II regions.IAU-Gruber FellowshipStanwood Johnston FellowshipKITP Graduate FellowshipDOE HEP Program DE-SC0010676NSF AST 0909129, AST-1009928, AST-1109394, PHY02-16783NASA Theory Program NNX14AH34GNASA NNX09AJ33GARC Future Fellowship FT120100363Monash University Larkins FellowshipDOE DE-GF02-87ER40328, DE-FC02-09ER41618Astronom

    Radiation Transport Simulations of Pulsational Pair-Instability Supernovae

    Full text link
    Massive stars of helium cores of 35-65 Msun eventually encounter the electron/positron creation instability, and it triggers explosive carbon or oxygen burning that produces several thermonuclear eruptions. The resulting catastrophe collisions of eruptive shells sometimes produce luminous transients with peak luminosity of 1043−104410^{43} - 10^{44} erg/sec, known as pulsational pair-instability supernovae (PPISNe). Previous 2D simulations of colliding shells show the development of Rayleigh-Taylor (RT) instabilities and mixing. Here we present radiation hydrodynamic PPISNe simulations of a 110 Msun solar-metallicity star that was promising to produce a superluminous transit in the early work. Our comprehensive study contains a suite of one-, two-, and three-dimensional models. We discuss the impact of dimensionality and fluid instabilities on the resulting light curves. The results show the RT mixing found in previous multidimensional hydro studies transforms into a thin and distorted shell due to radiative cooling. Radiation from the wiggly shell peaks at its bolometric light curve of ∼2×1043\sim 2\times10^{43} erg/sec, lasting about 150 days and following with a plateau of ∼3×1042\sim 3\times10^{42} erg/sec for another two hundred days before it fades away. The total radiation energy emitted from colliding shells is ∼1.8×1050\sim 1.8 \times 10^{50} erg, which is ∼27%\sim 27\% of the kinetic energy of the major eruption. The dimensional effects also manifest on the physical properties, such as irregularity and thickness of the shell. Our study suggests PPISNe is a promising candidate of luminous SNe, the radiation of which originates from colliding shells with a homogeneous mixing of ejecta.Comment: Submitted to ApJ, 16 pages, comments are welcom

    Pair Instability Supernovae of Very Massive Population III Stars

    Get PDF
    Numerical studies of primordial star formation suggest that the first stars in the universe may have been very massive. Stellar models indicate that non-rotating Population III stars with initial masses of 140-260 Msun die as highly energetic pair-instability supernovae. We present new two-dimensional simulations of primordial pair-instability supernovae done with the CASTRO code. Our simulations begin at earlier times than previous multidimensional models, at the onset of core collapse, to capture any dynamical instabilities that may be seeded by collapse and explosive burning. Such instabilities could enhance explosive yields by mixing hot ash with fuel, thereby accelerating nuclear burning, and affect the spectra of the supernova by dredging up heavy elements from greater depths in the star at early times. Our grid of models includes both blue supergiants and red supergiants over the range in progenitor mass expected for these events. We find that fluid instabilities driven by oxygen and helium burning arise at the upper and lower boundaries of the oxygen shell ∼\sim 20 - 100 seconds after core bounce. Instabilities driven by burning freeze out after the SN shock exits the helium core. As the shock later propagates through the hydrogen envelope, a strong reverse shock forms that drives the growth of Rayleigh--Taylor instabilities. In red supergiant progenitors, the amplitudes of these instabilities are sufficient to mix the supernova ejecta.Comment: 42 pages, 15 figures (accepted to ApJ
    • …
    corecore