37 research outputs found

    Novel therapeutic strategies targeting HIV integrase

    Get PDF
    Integration of the viral genome into host cell chromatin is a pivotal and unique step in the replication cycle of retroviruses, including HIV. Inhibiting HIV replication by specifically blocking the viral integrase enzyme that mediates this step is an obvious and attractive therapeutic strategy. After concerted efforts, the first viable integrase inhibitors were developed in the early 2000s, ultimately leading to the clinical licensure of the first integrase strand transfer inhibitor, raltegravir. Similarly structured compounds and derivative second generation integrase strand transfer inhibitors, such as elvitegravir and dolutegravir, are now in various stages of clinical development. Furthermore, other mechanisms aimed at the inhibition of viral integration are being explored in numerous preclinical studies, which include inhibition of 3' processing and chromatin targeting. The development of new clinically useful compounds will be aided by the characterization of the retroviral intasome crystal structure. This review considers the history of the clinical development of HIV integrase inhibitors, the development of antiviral drug resistance and the need for new antiviral compounds

    Model Studies for the B12 Dependent Methyltransferases

    No full text

    Clinical Pharmacokinetic, Pharmacodynamic and Drug-Interaction Profile of the Integrase Inhibitor Dolutegravir

    No full text
    Dolutegravir is a second generation integrase strand transfer inhibitor (INSTI) currently under review by the US FDA for marketing approval. Dolutegravir’s in vitro, protein adjusted 90% inhibitory concentration (IC(90)) for wild-type virus is 0.064 μg/ml, and it retains in vitro anti-HIV 1 activity across a broad range of viral phenotypes known to confer resistance to the currently marketed INSTIs, raltegravir and elvitegravir. Dolutegravir has a half-life (t(½)) of 13 to 14 hours and maintains concentrations over the in vitro, protein adjusted IC(90) for more than 30 hours following a single dose. Additionally, dolutegravir has comparatively low intersubject variability compared to raltegravir and elvitegravir. A plasma exposure-response relationship has been well described, with antiviral activity strongly correlating to trough concentration (C(trough)) values. Phase III trials have assessed the antiviral activity of dolutegravir compared with efavirenz and raltegravir in antiretroviral (ARV)-naïve patients and found dolutegravir to achieve more rapid and sustained virologic suppression in both instances. Additionally, studies of dolutegravir activity in patients with known INSTI-resistant mutations have been favorable, indicating that dolutegravir retains activity in a variety of INSTI resistant phenotypes. Much like currently marketed INSTIs, dolutegravir is very well tolerated. Because dolutegravir inhibits the renal transporter, organic cation transporter (OCT) 2, reduced tubular secretion of creatinine leads to non-progressive increases in serum creatinine. These serum creatinine increases have not been associated with decreased glomerular filtration rate or progressive renal impairment. Dolutegravir’s major and minor metabolic pathways are UDP glucuronosyltransferase (UGT)1A1 and cytochrome (CYP)3A4, respectively, and it neither induces nor inhibits CYP isozymes. Thus dolutegravir has a modest drug interaction profile. However, antacids significantly decrease dolutegravir plasma exposure and should be separated by 2 hours before, or 6 hours after, a dolutegravir dose. In summary, dolutegravir is the first of the second generation INSTIs, which exhibits a predictable pharmacokinetic profile and a well-defined exposure-response relationship. Dolutegravir retains activity despite the presence of some class resistant mutations and achieves rapid and sustained virologic suppression in ARV-naïve and -experienced patients. Clinically dolutegravir is poised to become a commonly used component of antiretroviral regimens
    corecore