19 research outputs found
Physicochemical Characterization of Passive Films and Corrosion Layers by Differential Admittance and Photocurrent Spectroscopy
Two different electrochemical techniques, differential admittance and photocurrent spectroscopy, for the characterization of electronic and solid state properties of passive films and corrosion layers are described and critically evaluated. In order to get information on the electronic properties of passive film and corrosion layers as well as the necessary information to locate the characteristic energy levels of the passive film/electrolyte junction like: flat band potential (Ufb), conduction band edge (EC) or valence band edge (EV), a wide use of Mott-Schottky plots is usually reported in corrosion science and passivity studies. It has been shown, in several papers, that the use of simple M-S theory to get information on the electronic properties and energy levels location at the film/electrolyte interface can be seriously misleading and/or conflicting with the physical basis underlying the M-S theory. A critical appraisal of this approach to the study of very thin and thick anodic passive film grown on base-metals (Cr, Ni, Fe, SS etc..) or on valve metals (Ta, Nb, W etc..) is reported in this work, together with possible alternative approach to overcome some of the mentioned inconsistencies. At this aim the theory of amorphous semiconductor Schottky barrier, introduced several years ago in the study of passive film/electrolyte junction, is reviewed by taking into account some of the more recent results obtained by the present authors. Future developments of the theory appears necessary to get more exact quantitative information on the electronic properties of passive films, specially in the case of very thin film like those formed on base metals and their alloys.
The second technique described in this chapter, devoted to the physico-chemical characterization of passive film and corrosion layers, is a more recent technique based on the analysis of the photo-electrochemical answer of passive film/electrolyte junction under illumination with photons having suitable energy. Such a technique usually referred to as Photocurrent Spectroscopy (PCS) has been developed on the basis of the large research effort carried out by several groups in the 1970’s and aimed to investigate the possible conversion of solar energy by means of electrochemical cells. In this work the fundamentals of semiconductor/electrolyte junctions under illumination will be highlighted both for crystalline and amorphous materials. The role of amorphous nature and film thickness on the photo-electrochemical answer of passive film/solution interface is reviewed as well the use of PCS for quantitative analysis of the film composition based on a semi-empirical correlation between optical band gap and difference of electronegativity of film constituents previously suggested by the present authors. In this frame the results of PCS studies on valve metal oxides and valve metal mixed oxides will be discussed in order to show the validity of the proposed method. The results of PCS studies aimed to get information on passive film composition and carried out by different authors on base metals (Fe, Cr, Ni) and their alloys, including stainless steel, will be also compared with compositional analysis carried out by well-established surface analysis techniques
Relations of the surface structure to the kinetics of metal electrodes
The electrochemical dissolution and deposition of metals proceeds by ion transfer at kinks in monoatomic steps according to experimental evidence from dislocation-free surfaces of silver and iron. The mean distance of kinks in steps on silver is comparable to the distance of neighbouring atoms. Due to the relatively large specific edge energy the mean equilibrium distances of kinks in steps on iron surfaces are very long. The surface concentration of kinks growing with overpotential and pH is due to a special mechanism of generating monoatomic steps and kinks. Specific edge energies are obtained by investigating twodimensional nucleation, and growth or dissolution at screw dislocations terminating at the surface. Edge dislocations and dislocation loops terminating at the surface are sites of preferential nucleation of etch pits as shown by experiments with iron single crystals.
Lattice defects influencing the rate of ion transfer can be created by electrochemical processes. The dissolution of atomic hydrogen into iron produces mechanical stresses relaxing by formation of dislocation loops. During the dissolution of alloys the faster dissolving component may also dissolve from complete steps thereby creating pairs of kinks or injecting vacancies which facilitate interdiffusion