733 research outputs found

    Evidence of fast pebble growth near condensation fronts in the HL Tau protoplanetary disk

    Get PDF
    Water and simple organic molecular ices dominate the mass of solid materials available for planetesimal and planet formation beyond the water snow line. Here we analyze ALMA long baseline 2.9, 1.3 and 0.87 mm continuum images of the young star HL Tau, and suggest that the emission dips observed are due to rapid pebble growth around the condensation fronts of abundant volatile species. Specifically, we show that the prominent innermost dip at 13 AU is spatially resolved in the 0.87 mm image, and its center radius is coincident with the expected mid-plane condensation front of water ice. In addition, two other prominent dips, at distances of 32 and 63 AU, cover the mid-plane condensation fronts of pure ammonia or ammonia hydrates and clathrate hydrates (especially with CO and N2_2) formed from amorphous water ice. The spectral index map of HL Tau between 1.3 and 0.87 mm shows that the flux ratios inside the dips are statistically larger than those of nearby regions in the disk. This variation can be explained by a model with two dust populations, where most of solid mass resides in a component that has grown into decimeter size scales inside the dips. Such growth is in accord with recent numerical simulations of volatile condensation, dust coagulation and settling.Comment: 6 pages, 3 figures, Accepted for publication in the Astrophysical Journal Letter

    ALMA Observations of the T Tauri Binary System AS 205: Evidence for Molecular Winds and/or Binary Interactions

    Get PDF
    In this study, we present high-resolution millimeter observations of the dust and gas disk of the T Tauri star AS 205 N and its companion, AS 205 S, obtained with the Atacama Large Millimeter Array. The gas disk around AS 205 N, for which infrared emission spectroscopy demonstrates significant deviations from Keplerian motion that has been interpreted as evidence for a disk wind (Pontoppidan et al. 2011; Bast et al. 2011), also displays significant deviations from Keplerian disk emission in the observations presented here. Detections near both AS 205 N and S are obtained in 1.3 mm continuum, 12CO 2-1, 13CO 2-1 and C18O 2-1. The 12CO emission is extended up to 2 arcsec from AS 205N, and both 12CO and 13CO display deviations from Keplerian rotation at all angular scales. Two possible explanations for these observations hold up best to close scrutiny - tidal interaction with AS 205 S or disk winds (or a combination of the two), and we discuss these possibilities in some detail.Comment: accepted by The Astrophysical Journa

    Mass inventory of the giant-planet formation zone in a solar nebula analog

    Get PDF
    The initial mass distribution in the solar nebula is a critical input to planet formation models that seek to reproduce today's Solar System. Traditionally, constraints on the gas mass distribution are derived from observations of the dust emission from disks, but this approach suffers from large uncertainties in grain growth and gas-to-dust ratio. On the other hand, previous observations of gas tracers only probe surface layers above the bulk mass reservoir. Here we present the first partially spatially resolved observations of the 13^{13}C18^{18}O J=3-2 line emission in the closest protoplanetary disk, TW Hya, a gas tracer that probes the bulk mass distribution. Combining it with the C18^{18}O J=3-2 emission and the previously detected HD J=1-0 flux, we directly constrain the mid-plane temperature and optical depths of gas and dust emission. We report a gas mass distribution of 135+8×^{+8}_{-5}\times(R/20.5AU)0.90.3+0.4^{-0.9^{+0.4}_{-0.3}} g cm2^{-2} in the expected formation zone of gas and ice giants (5-21AU). We find the total gas/millimeter-sized dust mass ratio is 140 in this region, suggesting that at least 2.4M_earth of dust aggregates have grown to >centimeter sizes (and perhaps much larger). The radial distribution of gas mass is consistent with a self-similar viscous disk profile but much flatter than the posterior extrapolation of mass distribution in our own and extrasolar planetary systems.Comment: Definitive version of the manuscript is published in Nature Astronomy, 10.1038/s41550-017-0130. This is the authors' versio

    Detection of water vapor in the terrestrial planet forming region of a transition disk

    Get PDF
    We report a detection of water vapor in the protoplanetary disk around DoAr 44 with the Texas Echelon Cross Echelle Spectrograph --- a visitor instrument on the Gemini north telescope. The DoAr 44 disk consists of an optically thick inner ring and outer disk, separated by a dust-cleared 36 AU gap, and has therefore been termed "pre-transitional". To date, this is the only disk with a large inner gap known to harbor detectable quantities of warm (T=450 K) water vapor. In this work, we detect and spectrally resolve three mid-infrared pure rotational emission lines of water vapor from this source, and use the shapes of the emission lines to constrain the location of the water vapor. We find that the emission originates near 0.3 AU --- the inner disk region. This characteristic region coincides with that inferred for both optically thick and thin thermal infrared dust emission, as well as rovibrational CO emission. The presence of water in the dust-depleted region implies substantial columns of hydrogen (>10^{22} cm-2) as the water vapor would otherwise be destroyed by photodissociation. Combined with the dust modeling, this column implies a gas/small-dust ratio in the optically thin dusty region of >1000. These results demonstrate that DoAr 44 has maintained similar physical and chemical conditions to classical protoplanetary disks in its terrestrial-planet forming regions, in spite of having formed a large gap.Comment: Paper accepted to the Astrophysical Journal Letter

    A high resolution mid-infrared survey of water emission from protoplanetary disks

    Get PDF
    We present the largest survey of spectrally resolved mid-infrared water emission to date, with spectra for 11 disks obtained with the Michelle and TEXES spectrographs on Gemini North. Water emission is detected in 6 of 8 disks around classical T Tauri stars. Water emission is not detected in the transitional disks SR 24 N and SR 24 S, in spite of SR 24 S having pre-transitional disk properties like DoAr 44, which does show water emission (Salyk et al. 2015). With R~100,000, the TEXES water spectra have the highest spectral resolution possible at this time, and allow for detailed lineshape analysis. We find that the mid-IR water emission lines are similar to the "narrow component" in CO rovibrational emission (Banzatti & Pontoppidan 2015), consistent with disk radii of a few AU. The emission lines are either single peaked, or consistent with a double peak. Single-peaked emission lines cannot be produced with a Keplerian disk model, and may suggest that water participates in the disk winds proposed to explain single-peaked CO emission lines (Bast et al. 2011, Pontoppidan et al. 2011). Double-peaked emission lines can be used to determine the radius at which the line emission luminosity drops off. For HL Tau, the lower limit on this measured dropoff radius is consistent with the 13 AU dark ring (ALMA partnership et al. 2015). We also report variable line/continuum ratios from the disks around DR Tau and RW Aur, which we attribute to continuum changes and line flux changes, respectively. The reduction in RW Aur line flux corresponds with an observed dimming at visible wavelengths (Rodriguez et al. 2013).Comment: To appear in the Astrophysical Journa

    Unlocking CO Depletion in Protoplanetary Disks II. Primordial C/H Predictions Inside the CO Snowline

    Get PDF
    CO is thought to be the main reservoir of volatile carbon in protoplanetary disks, and thus the primary initial source of carbon in the atmospheres of forming giant planets. However, recent observations of protoplanetary disks point towards low volatile carbon abundances in many systems, including at radii interior to the CO snowline. One potential explanation is that gas phase carbon is chemically reprocessed into less volatile species, which are frozen on dust grain surfaces as ice. This mechanism has the potential to change the primordial C/H ratio in the gas. However, current observations primarily probe the upper layers of the disk. It is not clear if the low volatile carbon abundances extend to the midplane, where planets form. We have run a grid of 198 chemical models, exploring how the chemical reprocessing of CO depends on disk mass, dust grain size distribution, temperature, cosmic ray and X-ray ionization rate, and initial water abundance. Building on our previous work focusing on the warm molecular layer, here we analyze the results for our grid of models in the disk midplane at 12 au. We find that either an ISM level cosmic ray ionization rate or the presence of UV photons due to a low dust surface density are needed to chemically reduce the midplane CO gas abundance by at least an order of magnitude within 1 Myr. In the majority of our models CO does not undergo substantial reprocessing by in situ chemistry and there is little change in the gas phase C/H and C/O ratios over the lifetime of the typical disk. However, in the small sub-set of disks where the disk midplane is subject to a source of ionization or photolysis, the gas phase C/O ratio increases by up to nearly 9 orders of magnitude due to conversion of CO into volatile hydrocarbons.Comment: Accepted for publication in ApJ, 15 pages, 10 figures, 3 table

    Comparison of the dust and gas radial structure in the transition disk [PZ99] J160421.7-213028

    Get PDF
    We present ALMA observations of the 880  μm continuum and CO J = 3–2 line emission from the transition disk around [PZ99] J160421.7-213028, a solar mass star in the Upper Scorpius OB association. Analysis of the continuum data indicates that 80% of the dust mass is concentrated in an annulus extending between 79 and 114 AU in radius. Dust is robustly detected inside the annulus, at a mass surface density 100 times lower than that at 80 AU. The CO emission in the inner disk also shows a significantly decreased mass surface density, but we infer a cavity radius of only 31 AU for the gas. The large separation of the dust and gas cavity edges, as well as the high radial concentration of millimeter-sized dust grains, is qualitatively consistent with the predictions of pressure trap models that include hydrodynamical disk–planet interactions and dust coagulation/fragmentation processes

    3-Dimethyl­amino-1-(4-methyl­phen­yl)prop-2-en-1-one

    Get PDF
    In the title compound, C12H15NO, the C=C and C=O functional groups and the benzene ring are involved in an extended conjugated system. The mol­ecules are essentially planar with a maximal deviation from planarity for the non-H atoms of 0.062 (2) Å
    corecore