44 research outputs found
Shot Noise in Mesoscopic Diffusive Andreev Wires
We study shot noise in mesoscopic diffusive wires between a normal and a
superconducting terminal. We particularly focus on the regime, in which the
proximity-induced reentrance effect is important. We will examine the
difference between a simple Boltzmann-Langevin description, which neglects
induced correlations beyond the simple conductivity correction, and a full
quantum calculation. In the latter approach, it turns out that two Andreev
pairs propagating coherently into the normal metal are anti-correlated for
E<E_c, where E_c=D/L^2 is the Thouless energy. In a fork geometry the
flux-sensitive suppression of the effective charge was confirmed
experimentally.Comment: 12 pages, proceedings of the NATO ARW MQO, Bled, Sloveni
Visualizing landscapes of the superconducting gap in heterogeneous superconductor thin films: geometric influences on proximity effects
The proximity effect is a central feature of superconducting junctions as it
underlies many important applications in devices and can be exploited in the
design of new systems with novel quantum functionality. Recently, exotic
proximity effects have been observed in various systems, such as
superconductor-metallic nanowires and graphene-superconductor structures.
However, it is still not clear how superconducting order propagates spatially
in a heterogeneous superconductor system. Here we report intriguing influences
of junction geometry on the proximity effect for a 2D heterogeneous
superconductor system comprised of 2D superconducting islands on top of a
surface metal. Depending on the local geometry, the superconducting gap induced
in the surface metal region can either be confined to the boundary of the
superconductor, in which the gap decays within a short distance (~ 15 nm), or
can be observed nearly uniformly over a distance of many coherence lengths due
to non-local proximity effects.Comment: 17 pages, 4 figure
Full Counting Statistics of Superconductor--Normal-Metal Heterostructures
The article develops a powerful theoretical tool to obtain the full counting
statistics. By a slight extension of the standard Keldysh method we can access
immediately all correlation functions of the current operator. Embedded in a
quantum generalization of the circuit theory of electronic transport, we are
able to study the full counting statistics of a large class of two-terminal
contacts and multi-terminal structures, containing superconductors and normal
metals as elements. The practical use of the method is demonstrated in many
examples.Comment: 35 pages, contribution to "Quantum Noise", ed. by Yu.V. Nazarov and
Ya.M. Blanter, minor changes in text, references adde
Superconducting spintronics
The interaction between superconducting and spin-polarized orders has recently emerged as a major research field following a series
of fundamental breakthroughs in charge transport in superconductor-ferromagnet heterodevices which promise new device
functionality. Traditional studies which combine spintronics and superconductivity have mainly focused on the injection of
spin-polarized quasiparticles into superconducting materials. However, a complete synergy between superconducting and magnetic
orders turns out to be possible through the creation of spin-triplet Cooper pairs which are generated at carefully engineered
superconductor interfaces with ferromagnetic materials. Currently, there is intense activity focused on identifying materials
combinations which merge superconductivity and spintronics in order to enhance device functionality and performance. The results
look promising: it has been shown, for example, that superconducting order can greatly enhance central effects in spintronics such as
spin injection and magnetoresistance. Here, we review the experimental and theoretical advances in this field and provide an outlook
for upcoming challenges related to the new concept of superconducting spintronics.J.L. was supported by the Research Council of Norway, Grants No. 205591 and 216700.
J.W.A.R. was supported by the UK Royal Society and the Leverhulme Trust through an
International Network Grant (IN-2013-033).This is the accepted manuscript. The final version is available at http://www.nature.com/nphys/journal/v11/n4/full/nphys3242.html
SQUIPT - Superconducting Quantum Interference Proximity Transistor
We present the realization and characterization of a novel-concept
interferometer, the superconducting quantum interference proximity transistor
(SQUIPT). Its operation relies on the modulation with the magnetic field of the
density of states of a proximized metallic wire embedded in a superconducting
ring. Flux sensitivities down to Hz can be
achieved even for a non-optimized design, with an intrinsic dissipation ( fW) which is several orders of magnitude smaller than in conventional
superconducting interferometers. Our results are in agreement with the
theoretical prediction of the SQUIPT behavior, and suggest that optimization of
the device parameters would lead to a large enhancement of sensitivity for the
detection of tiny magnetic fields. The features of this setup and their
potential relevance for applications are further discussed.Comment: 5+ pages, 5 color figure
Epigenetic control of the ubiquitin carboxyl terminal hydrolase 1 in renal cell carcinoma
<p>Abstract</p> <p>Background</p> <p>The ubiquitin carboxyl-terminal hydrolase 1 (UCHL1) gene involved in the regulation of cellular ubiquitin levels plays an important role in different cellular processes including cell growth and differentiation. Aberrant expression of UCHL1 has been found in a number of human solid tumors including renal cell carcinoma (RCC). In RCC, UCHL1 overexpression is associated with tumor progression and an altered von Hippel Lindau gene expression.</p> <p>Methods</p> <p>To determine the underlying mechanisms for the heterogeneous UCHL1 expression pattern in RCC the UCHL1 promoter DNA methylation status was determined in 17 RCC cell lines as well as in 32 RCC lesions and corresponding tumor adjacent kidney epithelium using combined bisulfite restriction analysis as well as bisulfite DNA sequencing.</p> <p>Results</p> <p>UCHL1 expression was found in all 32 tumor adjacent kidney epithelium samples. However, the lack of or reduced UCHL1 mRNA and/or protein expression was detected in 13/32 RCC biopsies and 7/17 RCC cell lines and due to either a total or partial methylation of the UCHL1 promoter DNA. Upon 2'-deoxy-5-azacytidine treatment an induction of UCHL1 mRNA and protein expression was found in 9/17 RCC cell lines, which was linked to the demethylation degree of the UCHL1 promoter DNA.</p> <p>Conclusion</p> <p>Promoter hypermethylation represents a mechanism for the silencing of the UCHL1 gene expression in RCC and supports the concept of an epigenetic control for the expression of UCHL1 during disease progression.</p
