26 research outputs found

    Public policy action and CCC implementation: benefits and hurdles

    Get PDF
    Policy change continues to be an increasingly effective means of advancing the agenda of comprehensive cancer control. Efforts have moved progressively from describing how public policy can enhance the comprehensive cancer control agenda to implementation of public policy best practices at both the state and federal levels. The current political and economic contexts bring additional challenges and opportunities to the efforts surrounding comprehensive cancer control and policy. The purpose of this paper is to highlight recent policy successes, to illustrate the importance of policy as a means of advancing the comprehensive cancer control agenda, and to discuss continued policy action as we move forward in a time of healthcare reform and continuing economic uncertainty

    Patterns of Coral Disease across the Hawaiian Archipelago: Relating Disease to Environment

    Get PDF
    In Hawaii, coral reefs occur across a gradient of biological (host abundance), climatic (sea surface temperature anomalies) and anthropogenic conditions from the human-impacted reefs of the main Hawaiian Islands (MHI) to the pristine reefs of the northwestern Hawaiian Islands (NWHI). Coral disease surveys were conducted at 142 sites from across the Archipelago and disease patterns examined. Twelve diseases were recorded from three coral genera (Porites, Montipora, Acropora) with Porites having the highest prevalence. Porites growth anomalies (PorGAs) were significantly more prevalent within and indicative of reefs in the MHI and Porites trematodiasis (PorTrm) was significantly more prevalent within and indicative of reefs in the NWHI. Porites tissue loss syndrome (PorTLS) was also important in driving regional differences but that relationship was less clear. These results highlight the importance of understanding disease ecology when interpreting patterns of disease occurrence. PorTrm is caused by a parasitic flatworm that utilizes multiple hosts during its life cycle (fish, mollusk and coral). All three hosts must be present for the disease to occur and higher host abundance leads to higher disease prevalence. Thus, a high prevalence of PorTrm on Hawaiian reefs would be an indicator of a healthy coral reef ecosystem. In contrast, the high occurrence of PorGAs within the MHI suggests that PorGAs are related, directly or indirectly, to some environmental co-factor associated with increased human population sizes. Focusing on the three indicator diseases (PorGAs, PorTrm, PorTLS) we used statistical modeling to examine the underlying associations between disease prevalence and 14 different predictor variables (biotic and abiotic). All three diseases showed positive associations with host abundance and negative associations with thermal stress. The association with human population density differed among disease states with PorGAs showing a positive and PorTrm showing a negative association, but no significant explanatory power was offered for PorTLS

    Climate change and human impact at Sacrower See (NE Germany) during the past 13,000 years: a geochemical record

    No full text
    Lacustrine sediments in north-eastern Germany have rarely been used as archives to address the effects of climate change and human impact on both lake ecosystem and landscape evolution for this region. Sacrower See, a hardwater lake located in Brandenburg, provides a unique sediment record covering the past 13,000 years which was used to reconstruct climatic and anthropogenic forcing on lacustrine sedimentation. Time control is provided by 12 AMS C-14 dates of terrestrial plant remains, the Laacher See Tephra, and the onset of varve formation in AD 1870 (80 cal. BP). Geochemical (including XRF logging of major elements, CNS analyses as well as delta C-13(org) and delta N-15 measurements) and pollen analyses allowed detecting detailed environmental changes in the sediment record. During the Younger Dryas cold phase increased soil erosion and hypolimnetic oxygen depletion enhanced the nutrient supply to the lake water causing eutrophic conditions. The beginning of the Holocene is characterized by large changes in C/N ratios, total sulphur, delta C-13 of bulk organic matter as well as in K, Si, and Ti, reflecting the response of the lake's catchment to climatic warming. Reforestation reduced the influx of detrital particles and terrestrial organic matter. The first, rather weak evidence of human impact is documented only in the pollen record at 5,500 cal. BP. However, until 3,200 cal. BP sedimentological and geochemical parameters indicate relatively stable environmental conditions. During periods of intense human impact at around 3,200, 2,800, and 900 cal. BP peaks in Ti and K represent phases of increased soil erosion due to forest clearing during the Bronze Age, Iron Age, and Medieval Times, respectively. In general, greater variation is observed in most variables during these perturbations, indicating less stable environmental conditions. The steady rise of biogenic silica accumulation rates during the Holocene reflects an increasing productivity of Sacrower See until diatoms were outcompeted by other algae during the last centuries. The applied multi-proxy approach fosters the interpretation of the sediment record to reveal a consistent picture of environmental change including environmental factors controlling lake ontogeny and the effects of human impact
    corecore