11 research outputs found
Two Distinct Integrin-Mediated Mechanisms Contribute to Apical Lumen Formation in Epithelial Cells
Background: Formation of apical compartments underlies the morphogenesis of most epithelial organs during development. The extracellular matrix (ECM), particularly the basement membrane (BM), plays an important role in orienting the apico-basal polarity and thereby the positioning of apical lumens. Integrins have been recognized as essential mediators of matrix-derived polarity signals. The importance of b1-integrins in epithelial polarization is well established but the significance of the accompanying a-subunits have not been analyzed in detail. Principal Findings: Here we demonstrate that two distinct integrin-dependent pathways regulate formation of apical lumens to ensure robust apical membrane biogenesis under different microenvironmental conditions; 1) a2b1- and a6b4integrins were required to establish a basal cue that depends on Rac1-activity and guides apico-basal cell polarization. 2) a3b1-integrins were implicated in positioning of mitotic spindles in cysts, a process that is essential for Cdc42-driven epithelial hollowing. Significance: Identification of the separate processes driven by particular integrin receptors clarifies the functional hierarchies between the different integrins co-expressed in epithelial cells and provides valuable insight into the complexity of cell-ECM interactions thereby guiding future studies addressing the molecular basis of epithelial morphogenesis durin
Lithium Suppresses Astrogliogenesis by Neural Stem and Progenitor Cells by Inhibiting STAT3 Pathway Independently of Glycogen Synthase Kinase 3 Beta
Transplanted neural stem and progenitor cells (NSCs) produce mostly astrocytes in injured spinal cords. Lithium stimulates neurogenesis by inhibiting GSK3b (glycogen synthetase kinase 3-beta) and increasing WNT/beta catenin. Lithium suppresses astrogliogenesis but the mechanisms were unclear. We cultured NSCs from subventricular zone of neonatal rats and showed that lithium reduced NSC production of astrocytes as well as proliferation of glia restricted progenitor (GRP) cells. Lithium strongly inhibited STAT3 (signal transducer and activator of transcription 3) activation, a messenger system known to promote astrogliogenesis and cancer. Lithium abolished STAT3 activation and astrogliogenesis induced by a STAT3 agonist AICAR (5-aminoimidazole-4-carboxamide 1-beta-D-ribofuranoside), suggesting that lithium suppresses astrogliogenesis by inhibiting STAT3. GSK3β inhibition either by a specific GSK3β inhibitor SB216763 or overexpression of GID5-6 (GSK3β Interaction Domain aa380 to 404) did not suppress astrogliogenesis and GRP proliferation. GSK3β inhibition also did not suppress STAT3 activation. Together, these results indicate that lithium inhibits astrogliogenesis through non-GSK3β-mediated inhibition of STAT. Lithium may increase efficacy of NSC transplants by increasing neurogenesis and reducing astrogliogenesis. Our results also may explain the strong safety record of lithium treatment of manic depression. Millions of people take high-dose (>1 gram/day) lithium carbonate for a lifetime. GSK3b inhibition increases WNT/beta catenin, associated with colon and other cancers. STAT3 inhibition may reduce risk for cancer
Leucine-rich repeat-containing G-protein coupled receptor 5/GPR49 activates G12/13-Rho GTPase pathway
Leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5/GPR49) is highly expressed in adult stem cells of various tissues, such as intestine, hair follicles, and stomach. LGR5 is also overexpressed in some colon and ovarian tumors. Recent reports show that R-spondin (RSPO) family ligands bind to and activate LGR5, enhancing canonical Wnt signaling via the interaction with LRP5/6 and Frizzled. The identity of heterotrimeric G-proteins coupled to LGR5, however, remains unclear. Here, we show that Rho GTPase is a downstream target of LGR5. Overexpression of LGR5 induced SRF-RE luciferase activity, a reporter of Rho signaling. RSPOs, ligands for LGR4, LGR5, and LGR6, however, did not induce SRF-RE reporter activity in the presence of LGR5. Consistently, LGR5-induced activity of the SRF-RE reporter was inhibited by Rho inhibitor C3 transferase and RhoA N19 mutant, and knockdown of Gα(12/13) genes blocked the reporter activity induced by LGR5. In addition, focal adhesion kinase, NF-κB and c-fos, targets of Rho GTPase, were shown to be regulated by LGR5. Here, we have demonstrated, for the first time, that LGR5 is coupled to the Rho pathway through G(12/13) signaling
α-Catulin, a Rho signalling component, can regulate NF-κB through binding to IKK-β, and confers resistance to apoptosis
The tyrosine phosphatase SHP-1 negatively regulates cytotrophoblast proliferation in first-trimester human placenta by modulating EGFR activation
SYK interaction with ITGβ4 suppressed by Epstein-Barr virus LMP2A modulates migration and invasion of nasopharyngeal carcinoma cells
Loss of Cadherin-Catenin Adhesion System in Invasive Cancer Cells
As described in the previous chapter, the loss of E-cadherin is the key event in epithelial–mesenchymal transition. While downregulation of E-cadherin could occur via aberrant Akt signaling, direct somatic mutations in E-cadherin are frequent in epithelial tumors such as diffuse-type gastric and lobular breast cancers, where they can be found in up to 50% of primary neoplasms (Berx et al. 1998). E-cadherin mutations were also observed in primary endometrial and ovarian carcinomas, albeit with a lower frequency (Risinger et al. 1994; Muta et al. 1996). The consequences of these mutations for EMT and tumor cell invasion are discussed below
