22 research outputs found
Measurement of the H-3(Lambda) lifetime in Au plus Au collisions at the BNL Relativistic Heavy Ion Collider
Coherent diffractive photoproduction of rho(0) mesons on gold nuclei at 200 GeV/nucleon-pair at the Relativistic Heavy Ion Collider
Harmonic decomposition of three-particle azimuthal correlations at energies available at the BNL Relativistic Heavy Ion Collider
Beam Energy Dependence of Jet-Quenching Effects in Au plus Au Collisions at root s(NN)=7.7, 11.5, 14.5, 19.6, 27, 39, and 62.4 GeV
We report measurements of the nuclear modification factor, , for charged hadrons as well as identified , , and for Au+Au collision energies of = 7.7, 11.5, 14.5, 19.6, 27, 39, and 62.4 GeV. We observe a clear high- net suppression in central collisions at 62.4 GeV for charged hadrons which evolves smoothly to a large net enhancement at lower energies. This trend is driven by the evolution of the pion spectra, but is also very similar for the kaon spectra. While the magnitude of the proton at high does depend on collision energy, neither the proton nor the anti-proton at high exhibit net suppression at any energy. A study of how the binary collision scaled high- yield evolves with centrality reveals a non-monotonic shape that is consistent with the idea that jet-quenching is increasing faster than the combined phenomena that lead to enhancement.We report measurements of the nuclear modification factor RCP for charged hadrons as well as identified π+(-), K+(-), and p(p¯) for Au+Au collision energies of sNN=7.7, 11.5, 14.5, 19.6, 27, 39, and 62.4 GeV. We observe a clear high-pT net suppression in central collisions at 62.4 GeV for charged hadrons which evolves smoothly to a large net enhancement at lower energies. This trend is driven by the evolution of the pion spectra but is also very similar for the kaon spectra. While the magnitude of the proton RCP at high pT does depend on the collision energy, neither the proton nor the antiproton RCP at high pT exhibit net suppression at any energy. A study of how the binary collision-scaled high-pT yield evolves with centrality reveals a nonmonotonic shape that is consistent with the idea that jet quenching is increasing faster than the combined phenomena that lead to enhancement
