1,337 research outputs found
Improved estimates of 222 nm far-UVC susceptibility for aerosolized human coronavirus via a validated high-fidelity coupled radiation-CFD code.
Transmission of SARS-CoV-2 by aerosols has played a significant role in the rapid spread of COVID-19 across the globe. Indoor environments with inadequate ventilation pose a serious infection risk. Whilst vaccines suppress transmission, they are not 100% effective and the risk from variants and new viruses always remains. Consequently, many efforts have focused on ways to disinfect air. One such method involves use of minimally hazardous 222 nm far-UVC light. Whilst a small number of controlled experimental studies have been conducted, determining the efficacy of this approach is difficult because chamber or room geometry, and the air flow within them, influences both far-UVC illumination and aerosol dwell times. Fortunately, computational multiphysics modelling allows the inadequacy of dose-averaged assessment of viral inactivation to be overcome in these complex situations. This article presents the first validation of the WYVERN radiation-CFD code for far-UVC air-disinfection against survival fraction measurements, and the first measurement-informed modelling approach to estimating far-UVC susceptibility of viruses in air. As well as demonstrating the reliability of the code, at circa 70% higher, our findings indicate that aerosolized human coronaviruses are significantly more susceptible to far-UVC than previously thought
The dynamics of human body weight change
An imbalance between energy intake and energy expenditure will lead to a
change in body weight (mass) and body composition (fat and lean masses). A
quantitative understanding of the processes involved, which currently remains
lacking, will be useful in determining the etiology and treatment of obesity
and other conditions resulting from prolonged energy imbalance. Here, we show
that the long-term dynamics of human weight change can be captured by a
mathematical model of the macronutrient flux balances and all previous models
are special cases of this model. We show that the generic dynamical behavior of
body composition for a clamped diet can be divided into two classes. In the
first class, the body composition and mass are determined uniquely. In the
second class, the body composition can exist at an infinite number of possible
states. Surprisingly, perturbations of dietary energy intake or energy
expenditure can give identical responses in both model classes and existing
data are insufficient to distinguish between these two possibilities. However,
this distinction is important for the efficacy of clinical interventions that
alter body composition and mass
A systematic review on 'Foveal Crowding' in visually impaired children and perceptual learning as a method to reduce Crowding
Contains fulltext :
102577.pdf (publisher's version ) (Open Access)Background - This systematic review gives an overview of foveal crowding (the inability to recognize objects due to surrounding nearby contours in foveal vision) and possible interventions. Foveal crowding can have a major effect on reading rate and deciphering small pieces of information from busy visual scenes. Three specific groups experience more foveal crowding than adults with normal vision (NV): 1) children with NV, 2) visually impaired (VI ) children and adults and 3) children with cerebral visual impairment (CVI). The extent and magnitude of foveal crowding as well as interventions aimed at reducing crowding were investigated in this review. The twofold goal of this review is : [A] to compare foveal crowding in children with NV, VI children and adults and CVI children and [B] to compare interventions to reduce crowding. Methods - Three electronic databases were used to conduct the literature search: PubMed, PsycINFO (Ovid), and Cochrane. Additional studies were identified by contacting experts. Search terms included visual perception, contour interaction, crowding, crowded, and contour interactions. Results - Children with normal vision show an extent of contour interaction over an area 1.5-3x as large as that seen in adults NV. The magnitude of contour interaction normally ranges between 1-2 lines on an acuity chart and this magnitude is even larger when stimuli are arranged in a circular configuration. Adults with congenital nystagmus (CN) show interaction areas that are 2x larger than those seen adults with NV. The magnitude of the crowding effect is also 2x as large in individuals with CN as in individuals with NV. Finally, children with CVI experience a magnitude of the crowding effect that is 3x the size of that experienced by adults with NV. Conclusions - The methodological heterogeneity, the diversity in paradigms used to measure crowding, made it impossible to conduct a meta-analysis. This is the first systematic review to compare crowding ratios and it shows that charts with 50% interoptotype spacing were most sensitive to capture crowding effects. The groups that showed the largest crowding effects were individuals with CN, VI adults with central scotomas and children with CVI. Perceptual Learning seems to be a promising technique to reduce excessive foveal crowding effects.14 p
Seismically induced landslide hazard and exposure modelling in Southern California based on the 1994 Northridge, California earthquake event
Quantitative modelling of landslide hazard, as opposed to landslide susceptibility, as a function of the earthquake trigger is vital in understanding and assessing future potential exposure to landsliding. Logistic regression analysis is a method commonly used to assess susceptibility to landsliding; however, estimating probability of landslide hazard as a result of an earthquake trigger is rarely undertaken. This paper utilises a very detailed landslide inventory map and a comprehensive dataset on peak ground acceleration for the 1994 Mw6.7 Northridge earthquake event to fit a landslide hazard logistic regression model. The model demonstrates a high success rate for estimating probability of landslides as a result of earthquake shaking. Seven earthquake magnitude scenarios were simulated using the Open Source Seismic Hazard Analysis (OpenSHA) application to simulate peak ground acceleration, a covariate of landsliding, for each event. The exposure of assets such as population, housing and roads to high levels of shaking and high probabilities of landsliding was estimated for each scenario. There has been urban development in the Northridge region since 1994, leading to an increase in prospective exposure of assets to the earthquake and landslide hazards in the event of a potential future earthquake. As the earthquake scenario magnitude increases, the impact from earthquake shaking initially increases then quickly levels out, but potential losses from landslides increase at a rapid rate. The modelling approach, as well as the specific model, developed in this paper can be used to estimate landslide probabilities as a result of an earthquake event for any scenario where the peak ground acceleration variable is available
Red clover-derived isoflavones and mammographic breast density: a double-blind, randomized, placebo-controlled trial [ISRCTN42940165]
INTRODUCTION: Isoflavones are hypothesized to protect against breast cancer, but it is not clear whether they act as oestrogens or anti-oestrogens in breast tissue. Our aim was to determine the effects of taking a red clover-derived isoflavone supplement daily for 1 year on mammographic breast density. Effects on oestradiol, follicle-stimulating hormone (FSH), luteinizing hormone (LH), lymphocyte tyrosine kinase activity and menopausal symptoms were also assessed. METHODS: A total of 205 women (age range 49–65 years) with Wolfe P2 or DY mammographic breast patterns were randomly assigned to receive either a red clover-derived isoflavone tablet (26 mg biochanin A, 16 mg formononetin, 1 mg genistein and 0.5 mg daidzein) or placebo. Change in mammographic breast density, serum oestradiol, FSH, LH, menopausal symptoms and lymphocyte tyrosine kinase activity from baseline to 12 months were assessed. RESULTS: A total of 177 women completed the trial. Mammographic breast density decreased in both groups but the difference between the treatment and placebo was not statistically significant. There was a significant interaction between treatment group and oestrogen receptor (ESR1) PvuII polymorphism for the change in estimated percentage breast density (mean ± standard deviation): TT isoflavone 1.4 ± 12.3% and TT placebo -9.6 ± 14.2%; CT isoflavone -5.2 ± 12.0% and CT placebo -2.8 ± 10.3%; and CC isoflavone -3.4 ± 9.7% and CC placebo -1.1 ± 9.5%. There were no statistically significant treatment effects on oestradiol, FSH, or LH (assessed only in postmenopausal women), or on lymphocyte tyrosine kinase activity. Baseline levels of menopausal symptoms were low, and there were no statistically significant treatment effects on frequency of hot flushes or other menopausal symptoms. CONCLUSION: In contrast to studies showing that conventional hormone replacement therapies increase mammographic breast density, the isoflavone supplement did not increase mammographic breast density in this population of women. Furthermore, there were no effects on oestradiol, gonadotrophins, lymphocyte tyrosine kinase activity, or menopausal symptoms
MicroRNAs in pulmonary arterial remodeling
Pulmonary arterial remodeling is a presently irreversible pathologic hallmark of pulmonary arterial hypertension (PAH). This complex disease involves pathogenic dysregulation of all cell types within the small pulmonary arteries contributing to vascular remodeling leading to intimal lesions, resulting in elevated pulmonary vascular resistance and right heart dysfunction. Mutations within the bone morphogenetic protein receptor 2 gene, leading to dysregulated proliferation of pulmonary artery smooth muscle cells, have been identified as being responsible for heritable PAH. Indeed, the disease is characterized by excessive cellular proliferation and resistance to apoptosis of smooth muscle and endothelial cells. Significant gene dysregulation at the transcriptional and signaling level has been identified. MicroRNAs are small non-coding RNA molecules that negatively regulate gene expression and have the ability to target numerous genes, therefore potentially controlling a host of gene regulatory and signaling pathways. The major role of miRNAs in pulmonary arterial remodeling is still relatively unknown although research data is emerging apace. Modulation of miRNAs represents a possible therapeutic target for altering the remodeling phenotype in the pulmonary vasculature. This review will focus on the role of miRNAs in regulating smooth muscle and endothelial cell phenotypes and their influence on pulmonary remodeling in the setting of PAH
Immunological Change in a Parasite-Impoverished Environment: Divergent Signals from Four Island Taxa
Dramatic declines of native Hawaiian avifauna due to the human-mediated emergence of avian malaria and pox prompted an examination of whether island taxa share a common altered immunological signature, potentially driven by reduced genetic diversity and reduced exposure to parasites. We tested this hypothesis by characterizing parasite prevalence, genetic diversity and three measures of immune response in two recently-introduced species (Neochmia temporalis and Zosterops lateralis) and two island endemics (Acrocephalus aequinoctialis and A. rimitarae) and then comparing the results to those observed in closely-related mainland counterparts. The prevalence of blood parasites was significantly lower in 3 of 4 island taxa, due in part to the absence of certain parasite lineages represented in mainland populations. Indices of genetic diversity were unchanged in the island population of N. temporalis; however, allelic richness was significantly lower in the island population of Z. lateralis while both allelic richness and heterozygosity were significantly reduced in the two island-endemic species examined. Although parasite prevalence and genetic diversity generally conformed to expectations for an island system, we did not find evidence for a pattern of uniformly altered immune responses in island taxa, even amongst endemic taxa with the longest residence times. The island population of Z. lateralis exhibited a significantly reduced inflammatory cell-mediated response while levels of natural antibodies remained unchanged for this and the other recently introduced island taxon. In contrast, the island endemic A. rimitarae exhibited a significantly increased inflammatory response as well as higher levels of natural antibodies and complement. These measures were unchanged or lower in A. aequinoctialis. We suggest that small differences in the pathogenic landscape and the stochastic history of mutation and genetic drift are likely to be important in shaping the unique immunological profiles of small isolated populations. Consequently, predicting the impact of introduced disease on the many other endemic faunas of the remote Pacific will remain a challenge
Ultra-fast sequence clustering from similarity networks with SiLiX
<p>Abstract</p> <p>Background</p> <p>The number of gene sequences that are available for comparative genomics approaches is increasing extremely quickly. A current challenge is to be able to handle this huge amount of sequences in order to build families of homologous sequences in a reasonable time.</p> <p>Results</p> <p>We present the software package <monospace>SiLiX</monospace> that implements a novel method which reconsiders single linkage clustering with a graph theoretical approach. A parallel version of the algorithms is also presented. As a demonstration of the ability of our software, we clustered more than 3 millions sequences from about 2 billion BLAST hits in 7 minutes, with a high clustering quality, both in terms of sensitivity and specificity.</p> <p>Conclusions</p> <p>Comparing state-of-the-art software, <monospace>SiLiX</monospace> presents the best up-to-date capabilities to face the problem of clustering large collections of sequences. <monospace>SiLiX</monospace> is freely available at <url>http://lbbe.univ-lyon1.fr/SiLiX</url>.</p
Experimental Demonstration of the Fitness Consequences of an Introduced Parasite of Darwin's Finches
Introduced parasites are a particular threat to small populations of hosts living on islands because extinction can occur before hosts have a chance to evolve effective defenses. An experimental approach in which parasite abundance is manipulated in the field can be the most informative means of assessing a parasite's impact on the host. The parasitic fly Philornis downsi, recently introduced to the Galápagos Islands, feeds on nestling Darwin's finches and other land birds. Several correlational studies, and one experimental study of mixed species over several years, reported that the flies reduce host fitness. Here we report the results of a larger scale experimental study of a single species at a single site over a single breeding season.We manipulated the abundance of flies in the nests of medium ground finches (Geospiza fortis) and quantified the impact of the parasites on nestling growth and fledging success. We used nylon nest liners to reduce the number of parasites in 24 nests, leaving another 24 nests as controls. A significant reduction in mean parasite abundance led to a significant increase in the number of nests that successfully fledged young. Nestlings in parasite-reduced nests also tended to be larger prior to fledging.Our results confirm that P. downsi has significant negative effects on the fitness of medium ground finches, and they may pose a serious threat to other species of Darwin's finches. These data can help in the design of management plans for controlling P. downsi in Darwin's finch breeding populations
Predicting climate change impacts on polar bear litter size
Predicting the ecological impacts of climate warming is critical for species conservation. Incorporating future warming into population models, however, is challenging because reproduction and survival cannot be measured for yet unobserved environmental conditions. In this study, we use mechanistic energy budget models and data obtainable under current conditions to predict polar bear litter size under future conditions. In western Hudson Bay, we predict climate warming-induced litter size declines that jeopardize population viability: ∼28% of pregnant females failed to reproduce for energetic reasons during the early 1990s, but 40–73% could fail if spring sea ice break-up occurs 1 month earlier than during the 1990s, and 55–100% if break-up occurs 2 months earlier. Simultaneously, mean litter size would decrease by 22–67% and 44–100%, respectively. The expected timeline for these declines varies with climate-model-specific sea ice predictions. Similar litter size declines may occur in over one-third of the global polar bear population
- …