3,752 research outputs found

    Comparison of Expectant and Excisional/Ablative Management of Cervical Intraepithelial Neoplasia Grade 2 (CIN2) in the Era of HPV Testing

    Get PDF
    OBJECTIVE: To investigate conservative and excisional/ablative treatment outcomes for cervical intraepithelial neoplasia grade 2 (CIN2) following introduction of virological test of cure. METHODS: This was a retrospective study of prospectively collected data at a teaching hospital colposcopy unit. 331 sequential biopsy-proved CIN2 cases were involved. CIN2 cases diagnosed between 01/07/2014 and 31/12/2017 were either conservatively managed or treated with excision/ablation and then were followed up until discharge from colposcopy clinic and then using the national cervical cytology database. Outcomes were defined: cytological/histological regression was absence of high-grade CIN on biopsy and/or high-grade dysplasia; virological regression was cytological/histological regression and negative human papillomavirus testing; persistence was biopsy-proven CIN2 and/or moderate dyskaryosis; progression was biopsy-proven CIN3+ and/or severe dyskaryosis. RESULTS: Median follow-up was 22.6 months (range: 1.9–65.1 months). Among 175 (52.9%) patients initially managed conservatively, 77.3% (133/172) regressed, 13.4% (23/172) persisted, 9.3% (16/172) progressed to CIN3+, and 97 (56.4%) patients achieved virological regression. 156 (47.1%) patients underwent initial excision/ablation, with an 89.4% (110/123) virological cure rate. After discharge, 7 (4.0%) and 3 (1.9%) patients redeveloped CIN in the conservative and treatment groups, respectively, during a median period of 17.2 months. CONCLUSION: Conservative management is a reasonable and effective management strategy in appropriately selected women with CIN2. High rates of histological and virological regression should be expected. The previously mentioned data provide useful information for deciding management options

    In vitro volatile organic compound profiling using GCGC-TOFMS to differentiate bacteria associated with lung infections: A proof-of-concept study

    Full text link
    © 2016 IOP Publishing Ltd. Chronic pulmonary infections are the principal cause of morbidity and mortality in individuals with cystic fibrosis (CF). Due to the polymicrobial nature of these infections, the identification of the particular bacterial species responsible is an essential step in diagnosis and treatment. Current diagnostic procedures are time-consuming, and can also be expensive, invasive and unpleasant in the absence of spontaneously expectorated sputum. The development of a rapid, non-invasive methodology capable of diagnosing and monitoring early bacterial infection is desired. Future visions of real-time, in situ diagnosis via exhaled breath testing rely on the differentiation of bacteria based on their volatile metabolites. The objective of this proof-of-concept study was to investigate whether a range of CF-associated bacterial species (i.e. Pseudomonas aeruginosa, Burkholderia cenocepacia, Haemophilus influenzae, Stenotrophomonas maltophilia, Streptococcus pneumoniae and Streptococcus milleri) could be differentiated based on their in vitro volatile metabolomic profiles. Headspace samples were collected using solid phase microextraction (SPME), analyzed using comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GCGC-TOFMS) and evaluated using principal component analysis (PCA) in order to assess the multivariate structure of the data. Although it was not possible to effectively differentiate all six bacteria using this method, the results revealed that the presence of a particular pattern of VOCs (rather than a single VOC biomarker) is necessary for bacterial species identification. The particular pattern of VOCs was found to be dependent upon the bacterial growth phase (e.g. logarithmic versus stationary) and sample storage conditions (e.g. short-term versus long-term storage at -18 °C). Future studies of CF-associated bacteria and exhaled breath condensate will benefit from the approaches presented in this study and further facilitate the production of diagnostic tools for the early detection of bacterial lung infections

    Evolution of context dependent regulation by expansion of feast/famine regulatory proteins

    Full text link
    BACKGROUND: Expansion of transcription factors is believed to have played a crucial role in evolution of all organisms by enabling them to deal with dynamic environments and colonize new environments. We investigated how the expansion of the Feast/Famine Regulatory Protein (FFRP) or Lrp-like proteins into an eight-member family in Halobacterium salinarum NRC-1 has aided in niche-adaptation of this archaeon to a complex and dynamically changing hypersaline environment.RESULTS: We mapped genome-wide binding locations for all eight FFRPs, investigated their preference for binding different effector molecules, and identified the contexts in which they act by analyzing transcriptional responses across 35 growth conditions that mimic different environmental and nutritional conditions this organism is likely to encounter in the wild. Integrative analysis of these data constructed an FFRP regulatory network with conditionally active states that reveal how interrelated variations in DNA-binding domains, effector-molecule preferences, and binding sites in target gene promoters have tuned the functions of each FFRP to the environments in which they act. We demonstrate how conditional regulation of similar genes by two FFRPs, AsnC (an activator) and VNG1237C (a repressor), have striking environment-specific fitness consequences for oxidative stress management and growth, respectively.CONCLUSIONS: This study provides a systems perspective into the evolutionary process by which gene duplication within a transcription factor family contributes to environment-specific adaptation of an organism

    Tie-2 regulates the stemness and metastatic properties of prostate cancer cells.

    Get PDF
    Ample evidence supports that prostate tumor metastasis originates from a rare population of cancer cells, known as cancer stem cells (CSCs). Unfortunately, little is known about the identity of these cells, making it difficult to target the metastatic prostate tumor. Here, for the first time, we report the identification of a rare population of prostate cancer cells that express the Tie-2 protein. We found that this Tie-2High population exists mainly in prostate cancer cell lines that are capable of metastasizing to the bone. These cells not only express a higher level of CSC markers but also demonstrate enhanced resistance to the chemotherapeutic drug Cabazitaxel. In addition, knockdown of the expression of the Tie-2 ligand angiopoietin (Ang-1) led to suppression of CSC markers, suggesting that the Ang-1/Tie-2 signaling pathway functions as an autocrine loop for the maintenance of prostate CSCs. More importantly, we found that Tie-2High prostate cancer cells are more adhesive than the Tie-2Low population to both osteoblasts and endothelial cells. Moreover, only the Tie-2High, but not the Tie-2Low cells developed tumor metastasis in vivo when injected at a low number. Taken together, our data suggest that Tie-2 may play an important role during the development of prostate tumor metastasis.published_or_final_versio

    Measurement of T1 Mapping in Patients With Cardiac Devices: Off-Resonance Error Extends Beyond Visual Artifact but Can Be Quantified and Corrected

    Get PDF
    Background: Measurement of myocardial T1 is increasingly incorporated into standard cardiovascular magnetic resonance (CMR) protocols, however accuracy may be reduced in patients with metallic cardiovascular implants. Measurement is feasible in segments free from visual artifact, but there may still be off-resonance induced error. Aim: To quantify off-resonance induced T1 error in patients with metallic cardiovascular implants, and validate a method for error correction for a conventional MOLLI pulse sequence. Methods: Twenty-four patients with cardiac implantable electronic devices (CIEDs: 46% permanent pacemakers, PPMs; 33% implantable loop recorders, ILRs; and 21% implantable cardioverter-defibrillators, ICDs); and 31 patients with aortic valve replacement (AVR) (45% metallic) were studied. Paired mid-myocardial short-axis MOLLI and single breath-hold off-resonance field maps were acquired at 1.5 T. T1 values were measured by AHA segment, and segments with visual artifact were excluded. T1 correction was applied using a published relationship between off-resonance and T1. The accuracy of the correction was assessed in 10 healthy volunteers by measuring T1 before and after external placement of an ICD generator next to the chest to generate off-resonance. Results: T1 values in healthy volunteers with an ICD were underestimated compared to without (967 ± 52 vs. 997 ± 26 ms respectively, p = 0.0001), but were similar after correction (p = 0.57, residual difference 2 ± 27 ms). Artifact was visible in 4 ± 12, 42 ± 31, and 53 ± 27% of AHA segments in patients with ILRs, PPMs, and ICDs, respectively. In segments without artifact, T1 was underestimated by 63 ms (interquartile range: 7–143) per patient. The greatest error for patients with ILRs, PPMs and ICDs were 79, 146, and 191 ms, respectively. The presence of an AVR did not generate T1 error. Conclusion: Even when there is no visual artifact, there is error in T1 in patients with CIEDs, but not AVRs. Off-resonance field map acquisition can detect error in measured T1, and a correction can be applied to quantify T1 MOLLI accurately
    • …
    corecore