10 research outputs found
Modeling the differentiation of A- and C-type baroreceptor firing patterns
The baroreceptor neurons serve as the primary transducers of blood pressure
for the autonomic nervous system and are thus critical in enabling the body to
respond effectively to changes in blood pressure. These neurons can be
separated into two types (A and C) based on the myelination of their axons and
their distinct firing patterns elicited in response to specific pressure
stimuli. This study has developed a comprehensive model of the afferent
baroreceptor discharge built on physiological knowledge of arterial wall
mechanics, firing rate responses to controlled pressure stimuli, and ion
channel dynamics within the baroreceptor neurons. With this model, we were able
to predict firing rates observed in previously published experiments in both A-
and C-type neurons. These results were obtained by adjusting model parameters
determining the maximal ion-channel conductances. The observed variation in the
model parameters are hypothesized to correspond to physiological differences
between A- and C-type neurons. In agreement with published experimental
observations, our simulations suggest that a twofold lower potassium
conductance in C-type neurons is responsible for the observed sustained basal
firing, whereas a tenfold higher mechanosensitive conductance is responsible
for the greater firing rate observed in A-type neurons. A better understanding
of the difference between the two neuron types can potentially be used to gain
more insight into the underlying pathophysiology facilitating development of
targeted interventions improving baroreflex function in diseased individuals,
e.g. in patients with autonomic failure, a syndrome that is difficult to
diagnose in terms of its pathophysiology.Comment: Keywords: Baroreflex model, mechanosensitivity, A- and C-type
afferent baroreceptors, biophysical model, computational mode
pH-responsive hydrogel membranes based on modified chitosan: water transport and kinetics of swelling
Identifying physiological origins of baroreflex dysfunction in salt-sensitive hypertension in the Dahl SS rat
Salt-sensitive hypertension is known to be associated with dysfunction of the baroreflex control system in the Dahl salt-sensitive (SS) rat. However, neither the physiological mechanisms nor the genomic regions underlying the baroreflex dysfunction seen in this rat model are definitively known. Here, we have adopted a mathematical modeling approach to investigate the physiological and genetic origins of baroreflex dysfunction in the Dahl SS rat. We have developed a computational model of the overall baroreflex heart rate control system based on known physiological mechanisms to analyze telemetry-based blood pressure and heart rate data from two genetic strains of rat, the SS and consomic SS.13BN, on low- and high-salt diets. With this approach, physiological parameters are estimated, unmeasured physiological variables related to the baroreflex control system are predicted, and differences in these quantities between the two strains of rat on low- and high-salt diets are detected. Specific findings include: a significant selective impairment in sympathetic gain with high-salt diet in SS rats and a protection from this impairment in SS.13BN rats, elevated sympathetic and parasympathetic offsets with high-salt diet in both strains, and an elevated sympathetic tone with high-salt diet in SS but not SS.13BN rats. In conclusion, we have associated several important physiological parameters of the baroreflex control system with chromosome 13 and have begun to identify possible physiological mechanisms underlying baroreflex impairment and hypertension in the Dahl SS rat that may be further explored in future experimental and modeling-based investigation
