35 research outputs found

    IL-15 Participates in the Respiratory Innate Immune Response to Influenza Virus Infection

    Get PDF
    Following influenza infection, natural killer (NK) cells function as interim effectors by suppressing viral replication until CD8 T cells are activated, proliferate, and are mobilized within the respiratory tract. Thus, NK cells are an important first line of defense against influenza virus. Here, in a murine model of influenza, we show that virally-induced IL-15 facilitates the trafficking of NK cells into the lung airways. Blocking IL-15 delays NK cell entry to the site of infection and results in a disregulated control of early viral replication. By the same principle, viral control by NK cells can be therapeutically enhanced via intranasal administration of exogenous IL-15 in the early days post influenza infection. In addition to controlling early viral replication, this IL-15-induced mobilization of NK cells to the lung airways has important downstream consequences on adaptive responses. Primarily, depletion of responding NK1.1+ NK cells is associated with reduced immigration of influenza-specific CD8 T cells to the site of infection. Together this work suggests that local deposits of IL-15 in the lung airways regulate the coordinated innate and adaptive immune responses to influenza infection and may represent an important point of immune intervention

    Burn injury leads to increased long-term susceptibility to respiratory infection in both mouse models and population studies

    Get PDF
    Background: Burn injury initiates an acute inflammatory response that subsequently drives wound repair. However, acute disruption to the immune response is also common, leading to susceptibility to sepsis and increased morbidity and mortality. Despite increased understanding of the impact of burn injury on the immune system in the acute phase, little is known about longterm consequences of burn injury on immune function. This study was established to determine whether burn injury has long-term clinical impacts on patients' immune responses. Methods: Using a population-based retrospective longitudinal study and linked hospital morbidity and death data from Western Australia, comparative rates of hospitalisation for respiratory infections in burn patients and a non-injured comparator cohort were assessed. In addition, a mouse model of non-severe burn injury was also used in which viral respiratory infection was induced at 4 weeks post-injury using a mouse modified version of the Influenza A virus (H3NN; A/mem/71-a). Results and conclusions: The burn injured cohort contained 14893 adult patients from 1980-2012 after removal of those patients with evidence of smoke inhalation or injury to the respiratory tract. During the study follow-up study a total of 2,884 and 2,625 respiratory infection hospital admissions for the burn and uninjured cohorts, respectively, were identified. After adjusting for covariates, the burn cohort experienced significantly elevated admission rates for influenza and viral pneumonia (IRR, 95%CI: 1.73, 1.27-2.36), bacterial pneumonia (IRR, 95%CI: 2.05, 1.85-2.27) and for other types of upper and lower respiratory infections (IRR, 95% CI: 2.38, 2.09-2.71). In the mouse study an increased viral titre was observed after burn injury, accompanied by a reduced CD8 response and increased NK and NKT cells in the draining lymph nodes. This data suggests burn patients are at long-term increased risk of infection due to sustained modulation of the immune response

    The effector T cell response to influenza infection

    Get PDF
    Influenza virus infection induces a potent initial innate immune response, which serves to limit the extent of viral replication and virus spread. However, efficient (and eventual) viral clearance within the respiratory tract requires the subsequent activation, rapid proliferation, recruitment, and expression of effector activities by the adaptive immune system, consisting of antibody producing B cells and influenza-specific T lymphocytes with diverse functions. The ensuing effector activities of these T lymphocytes ultimately determine (along with antibodies) the capacity of the host to eliminate the viruses and the extent of tissue damage. In this review, we describe this effector T cell response to influenza virus infection. Based on information largely obtained in experimental settings (i.e., murine models), we will illustrate the factors regulating the induction of adaptive immune T cell responses to influenza, the effector activities displayed by these activated T cells, the mechanisms underlying the expression of these effector mechanisms, and the control of the activation/differentiation of these T cells, in situ, in the infected lungs
    corecore