73 research outputs found

    The evolution of rotating stars

    Full text link
    First, we review the main physical effects to be considered in the building of evolutionary models of rotating stars on the Upper Main-Sequence (MS). The internal rotation law evolves as a result of contraction and expansion, meridional circulation, diffusion processes and mass loss. In turn, differential rotation and mixing exert a feedback on circulation and diffusion, so that a consistent treatment is necessary. We review recent results on the evolution of internal rotation and the surface rotational velocities for stars on the Upper MS, for red giants, supergiants and W-R stars. A fast rotation is enhancing the mass loss by stellar winds and reciprocally high mass loss is removing a lot of angular momentum. The problem of the ``break-up'' or Ω\Omega-limit is critically examined in connection with the origin of Be and LBV stars. The effects of rotation on the tracks in the HR diagram, the lifetimes, the isochrones, the blue to red supergiant ratios, the formation of W-R stars, the chemical abundances in massive stars as well as in red giants and AGB stars, are reviewed in relation to recent observations for stars in the Galaxy and Magellanic Clouds. The effects of rotation on the final stages and on the chemical yields are examined, as well as the constraints placed by the periods of pulsars. On the whole, this review points out that stellar evolution is not only a function of mass M and metallicity Z, but of angular velocity Ω\Omega as well.Comment: 78 pages, 7 figures, review for Annual Review of Astronomy and Astrophysics, vol. 38 (2000

    The G-Protein β3 subunit 825 TT genotype is associated with epigastric pain syndrome-like dyspepsia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although familial clustering of functional dyspepsia (FD) has been reported, the role of genetics in the susceptibility to FD is still not well understood. Several reports indicate an association between FD and G-protein β3 (GNB3) subunit gene polymorphism (C825T); however, these studies had small sample sizes and the findings are inconclusive. In the present study we clarified the association between GNB3 gene polymorphism and dyspepsia in a large population of Japanese subjects who visited a hospital for annual health check-up.</p> <p>Methods</p> <p>Subjects with significant upper gastrointestinal findings were excluded. Subjects with dyspeptic symptoms were divided into either a postprandial distress syndrome (PDS) group or an epigastric pain syndrome (EPS) group according to the Rome III criteria. The presence of the GNB3 C825T polymorphism was then evaluated and logistic regression analysis was used to test all variables.</p> <p>Results</p> <p>The GNB3 genotype distribution in subjects without dyspepsia was 191 CC (25.1%), 368 TC (48.4%), and 202 TT (26.5%) and 17 CC (25.0%), 29 TC (42.6%), and 22 TT (32.4%) in subjects with dyspepsia. No significant correlation was found between the GNB3 825TT genotype and dyspepsia. However, the TT genotype was significantly associated with subjects with EPS-like symptoms (odds ratio (OR) = 2.00, 95% confidence interval (CI); 1.07-3.76) compared to the CT/CC genotype adjusted for gender and age. No significant correlation was found between GNB3 polymorphism and PDS-like symptoms (OR = 0.68, 95% CI; 0.31-1.51). With the exclusion of subjects with both EPS- and PDS-like symptoms, only the TT genotype was significantly associated with EPS-like symptoms (OR = 2.73, 95% CI; 1.23-5.91).</p> <p>Conclusion</p> <p>The homozygous GNB3 825T allele influences the susceptibility to EPS-like dyspepsia.</p

    Human papillomavirus, high-grade intraepithelial neoplasia and killer immunoglogulin-like receptors: a Western Australian cohort study

    Get PDF
    Background: Human papillomavirus (HPV) is the causative agent in cervical cancer and HPV genotypes 16 and 18 cause the majority of these cancers. Natural killer (NK) cells destroy virally infected and tumour cells via killer immunoglobulin-like receptors (KIR) that recognize decreased MHC class I expression. These NK cells may contribute to clearance of HPV infected and/or dysplastic cells, however since KIR controls NK cell activity, KIR gene variation may determine outcome of infection.Methods: KIR gene frequencies were compared between 147 patients with a history of high-grade cervical intraepithelial neoplasia (CIN) and a control population of 187, to determine if any KIR genes are associated with high-grade CIN. In addition a comparison was also made between cases of high grade CIN derived from 30 patients infected with HPV 16/18 and 29 patients infected with non-16/18 HPV to determine if KIR variation contributes to the disproportional carcinogenesis derived from HPV 16/18 infection.Results: High-grade CIN was weakly associated with the absence of KIR2DL2 and KIR2DS2 (p = 0.046 and 0.049 respectively, OR 0.6; 95% CI 0.4 – 0.9) but this association was lost after correction for multi-gene statistical analysis.No difference in KIR gene frequencies was found between high-grade CIN caused by HPV 16/18 and non-16/18.Conclusion: No strong association between KIR genes, high-grade CIN and HPV genotype was found in the Western Australian population

    A review of elliptical and disc galaxy structure, and modern scaling laws

    Full text link
    A century ago, in 1911 and 1913, Plummer and then Reynolds introduced their models to describe the radial distribution of stars in `nebulae'. This article reviews the progress since then, providing both an historical perspective and a contemporary review of the stellar structure of bulges, discs and elliptical galaxies. The quantification of galaxy nuclei, such as central mass deficits and excess nuclear light, plus the structure of dark matter halos and cD galaxy envelopes, are discussed. Issues pertaining to spiral galaxies including dust, bulge-to-disc ratios, bulgeless galaxies, bars and the identification of pseudobulges are also reviewed. An array of modern scaling relations involving sizes, luminosities, surface brightnesses and stellar concentrations are presented, many of which are shown to be curved. These 'redshift zero' relations not only quantify the behavior and nature of galaxies in the Universe today, but are the modern benchmark for evolutionary studies of galaxies, whether based on observations, N-body-simulations or semi-analytical modelling. For example, it is shown that some of the recently discovered compact elliptical galaxies at 1.5 < z < 2.5 may be the bulges of modern disc galaxies.Comment: Condensed version (due to Contract) of an invited review article to appear in "Planets, Stars and Stellar Systems"(www.springer.com/astronomy/book/978-90-481-8818-5). 500+ references incl. many somewhat forgotten, pioneer papers. Original submission to Springer: 07-June-201

    The Mass Distribution and Rotation Curve in the Galaxy

    Full text link
    The mass distribution in the Galaxy is determined by dynamical and photometric methods. Rotation curves are the major tool for determining the dynamical mass distribution in the Milky Way and spiral galaxies. The photometric (statistical) method utilizes luminosity profiles from optical and infrared observations, and assumes empirical values of the mass-to-luminosity (M/L) ratio to convert the luminosity to mass. In this chapter the dynamical method is described in detail, and rotation curves and mass distribution in the Milky Way and nearby spiral galaxies are presented. The dynamical method is categorized into two methods: the decomposition method and direct method. The former fits the rotation curve by calculated curve assuming several mass components such as a bulge, disk and halo, and adjust the dynamical parameters of each component. Explanations are given of the mass profiles as the de Vaucouleurs law, exponential disk, and dark halo profiles inferred from numerical simulations. Another method is the direct method, with which the mass distribution can be directly calculated from the data of rotation velocities without employing any mass models. Some results from both methods are presented, and the Galactic structure is discussed in terms of the mass. Rotation curves and mass distributions in external galaxies are also discussed, and the fundamental mass structures are shown to be universal.Comment: 54 pages, 25 figures, in 'Planets, Stars and Stellar Systems', Springer, Vol. 5, ed. G. Gilmore, Chap. 19. Note: Preprint with full figures is available from http://www.ioa.s.u-tokyo.ac.jp/~sofue/htdocs/2013psss
    • …
    corecore