73 research outputs found

    Mineral phosphorus drives glacier algal blooms on the Greenland Ice Sheet

    Get PDF
    Melting of the Greenland Ice Sheet is a leading cause of land-ice mass loss and cryosphere-attributed sea level rise. Blooms of pigmented glacier ice algae lower ice albedo and accelerate surface melting in the ice sheet’s southwest sector. Although glacier ice algae cause up to 13% of the surface melting in this region, the controls on bloom development remain poorly understood. Here we show a direct link between mineral phosphorus in surface ice and glacier ice algae biomass through the quantification of solid and fluid phase phosphorus reservoirs in surface habitats across the southwest ablation zone of the ice sheet. We demonstrate that nutrients from mineral dust likely drive glacier ice algal growth, and thereby identify mineral dust as a secondary control on ice sheet melting.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Polyphosphates as a source of enhanced P fluxes in marine sediments overlain by anoxic waters: Evidence from (31)P NMR

    Get PDF
    Sedimentary phosphorus (P) composition was investigated in Effingham Inlet, a fjord located on the west coast of Vancouver Island in Barkley Sound. Solid-state (31)P nuclear magnetic resonance (NMR) spectroscopy was applied to demineralized sediment samples from sites overlain by oxic and anoxic bottom waters. The two sites were similar in terms of key diagenetic parameters, including the mass accumulation rate, integrated sulfate reduction rate, and bulk sediment organic carbon content. In contrast, P benthic fluxes were much higher at the anoxic site. (31)P NMR results show that P esters and phosphonates are the major organic P species present at the surface and at depth in sediments at both sites. Polyphosphates were only found in the surface sediment of the site overlain by oxic waters. The varying stability of polyphosphates in microorganisms under different redox conditions may, in part, explain their distribution as well as differences in P flux between the two sites

    A Review of Phosphate Mineral Nucleation in Biology and Geobiology

    Get PDF

    Phosphorus Cycling in a Freshwater Estuary Impacted by Cyanobacterial Blooms

    No full text
    The availability of reactive phosphorus (P) may promote cyanobacterial blooms, a worldwide increasing phenomenon. Cyanobacteria may also regulate benthic P cycling through labile organic input to sediments, favouring reduced conditions and P release, ultimately acting as self-sustainment mechanism for the phytoplankton blooms. To analyse P–cyanobacteria feedbacks and compare external versus internal loads, we investigated P cycling in the Curonian Lagoon, a freshwater estuary with recurrent summer blooms. At two sites representing the dominant sediment types, we characterised P pools and mobility, via combined pore water analysis, calculation of diffusive exchanges and flux measurements via sediment core incubations. Annual P budgets were also calculated, to analyse the whole lagoon role as net sink or source. Muddy sediments, representing nearly 50 % of the lagoon surface, displayed higher P content if compared with sandy sediments, and most of this pool was reactive. The muddy site had consequently higher pore water dissolved inorganic phosphorus (DIP) concentrations maintaining high diffusive gradients. However, measured fluxes suggested that both sediment types were mostly P sinks except for a large DIP regeneration (nearly 30 μmol m−2 h−1) recorded at the muddy site during an intense cyanobacteria bloom. Such internal regeneration had the same order of magnitude as the annual external P load and may offset the net annual DIP sink role of the estuary. It may also prolong the duration of the bloom. Our results suggest that positive feedbacks can regulate N-fixing cyanobacteria blooms and internal P recycling, through either diffusive fluxes or sediment settling and resuspension
    corecore