61 research outputs found

    DNA methylation meta-analysis reveals cellular alterations in psychosis and markers of treatment-resistant schizophrenia

    Get PDF
    We performed a systematic analysis of blood DNA methylation profiles from 4,483 participants from seven independent cohorts identifying differentially methylated positions (DMPs) associated with psychosis, schizophrenia and treatment-resistant schizophrenia. Psychosis cases were characterized by significant differences in measures of blood cell proportions and elevated smoking exposure derived from the DNA methylation data, with the largest differences seen in treatment-resistant schizophrenia patients. We implemented a stringent pipeline to meta-analyze epigenome-wide association study (EWAS) results across datasets, identifying 95 DMPs associated with psychosis and 1,048 DMPs associated with schizophrenia, with evidence of colocalization to regions nominated by genetic association studies of disease. Many schizophrenia-associated DNA methylation differences were only present in patients with treatment-resistant schizophrenia, potentially reflecting exposure to the atypical antipsychotic clozapine. Our results highlight how DNA methylation data can be leveraged to identify physiological (e.g., differential cell counts) and environmental (e.g., smoking) factors associated with psychosis and molecular biomarkers of treatment-resistant schizophrenia

    A review on experimental and clinical genetic associations studies on fear conditioning, extinction and cognitive-behavioral treatment

    Get PDF
    Fear conditioning and extinction represent basic forms of associative learning with considerable clinical relevance and have been implicated in the pathogenesis of anxiety disorders. There is considerable inter-individual variation in the ability to acquire and extinguish conditioned fear reactions and the study of genetic variants has recently become a focus of research. In this review, we give an overview of the existing genetic association studies on human fear conditioning and extinction in healthy individuals and of related studies on cognitive-behavioral treatment (CBT) and exposure, as well as pathology development after trauma. Variation in the serotonin transporter (5HTT) and the catechol-o-methyltransferase (COMT) genes has consistently been associated with effects in pre-clinical and clinical studies. Interesting new findings, which however require further replication, have been reported for genetic variation in the dopamine transporter (DAT1) and the pituitary adenylate cyclase 1 receptor (ADCYAP1R1) genes, whereas the current picture is inconsistent for variation in the brain-derived neurotrophic factor (BDNF) gene. We end with a discussion of the findings and their limitations, as well as future directions that we hope will aid the field to develop further

    Convergent functional genomic studies of omega-3 fatty acids in stress reactivity, bipolar disorder and alcoholism

    Get PDF
    Omega-3 fatty acids have been proposed as an adjuvant treatment option in psychiatric disorders. Given their other health benefits and their relative lack of toxicity, teratogenicity and side effects, they may be particularly useful in children and in females of child-bearing age, especially during pregnancy and postpartum. A comprehensive mechanistic understanding of their effects is needed. Here we report translational studies demonstrating the phenotypic normalization and gene expression effects of dietary omega-3 fatty acids, specifically docosahexaenoic acid (DHA), in a stress-reactive knockout mouse model of bipolar disorder and co-morbid alcoholism, using a bioinformatic convergent functional genomics approach integrating animal model and human data to prioritize disease-relevant genes. Additionally, to validate at a behavioral level the novel observed effects on decreasing alcohol consumption, we also tested the effects of DHA in an independent animal model, alcohol-preferring (P) rats, a well-established animal model of alcoholism. Our studies uncover sex differences, brain region-specific effects and blood biomarkers that may underpin the effects of DHA. Of note, DHA modulates some of the same genes targeted by current psychotropic medications, as well as increases myelin-related gene expression. Myelin-related gene expression decrease is a common, if nonspecific, denominator of neuropsychiatric disorders. In conclusion, our work supports the potential utility of omega-3 fatty acids, specifically DHA, for a spectrum of psychiatric disorders such as stress disorders, bipolar disorder, alcoholism and beyond

    Affective neuroscience of pleasure: reward in humans and animals

    Full text link

    HIV Among Indigenous peoples: A Review of the Literature on HIV-Related Behaviour Since the Beginning of the Epidemic

    Full text link
    • …
    corecore