473 research outputs found

    The Impact of Helminth Infection on the Incidence of Metabolic Syndrome: A Systematic Review and Meta-Analysis

    Full text link
    Background: There are a growing number of publications that report an absence of inflammatory based disease among populations that are endemic to parasitic worms (helminths) demonstrating the ability of these parasites to potentially regulate human immune responses. The aim of this systematic review and meta-analysis was to determine the impact of helminth infection on metabolic outcomes in human populations. Methods: Using PRISMA guidelines, six databases were searched for studies published up to August 2020. Random effects meta-analysis was performed to estimate pooled proportions with 95% confidence intervals using the Review Manager Software version 5.4.1. Results: Fourteen studies were included in the review. Fasting blood glucose was significantly lower in persons with infection (MD -0.22, 95% CI -0.40- -0.04, P=0.02), HbA1c levels were lower, although not significantly, and prevalence of the metabolic syndrome (P=0.001) and type 2 diabetes was lower (OR 1.03, 95% CI 0.34-3.09, P<0.0001). Infection was negatively associated with type 2 diabetes when comparing person with diabetes to the group without diabetes (OR 0.44, 95% CI 0.29-0.67, P=0.0001). Conclusions: While infection with helminths was generally associated with improved metabolic function, there were notable differences in efficacy between parasite species. Based on the data assessed, live infection with S. mansoni resulted in the most significant positive changes to metabolic outcomes. Systematic Review Registration: Website: PROSPERO Identified: CRD42021227619

    Apolipoprotein-AI mimetic peptides D-4F and L-5F decrease hepatic inflammation and increase insulin sensitivity in C57BL/6 mice.

    Full text link
    BACKGROUND:Apolipoprotein-AI (apo-AI) is the major apolipoprotein found in high density lipoprotein particles (HDLs). We previously demonstrated that apo-AI injected directly into high-fat diet fed mice improved insulin sensitivity associated with decreased hepatic inflammation. While our data provides compelling proof of concept, apoA-I mimetic peptides are more clinically feasible. The aim of this study was to test whether apo-AI mimetic peptide (D-4F and L-5F) treatment will emulate the effects of full-length apo-AI to improve insulin sensitivity. METHODS:Male C57BL/6 mice were fed a high-fat diet for 16 weeks before receiving D4F mimetic peptide administered via drinking water or L5F mimetic peptide administered by intraperitoneal injection bi-weekly for a total of five weeks. Glucose tolerance and insulin tolerance tests were conducted to assess the effects of the peptides on insulin resistance. Effects of the peptides on inflammation, gluconeogenic enzymes and lipid synthesis were assessed by real-time PCR of key markers involved in the respective pathways. RESULTS:Treatment with apo-AI mimetic peptides D-4F and L-5F showed: (i) improved blood glucose clearance (D-4F 1.40-fold AUC decrease compared to HFD, P<0.05; L-4F 1.17-fold AUC decrease compared to HFD, ns) in the glucose tolerance test; (ii) improved insulin tolerance (D-4F 1.63-fold AUC decrease compared to HFD, P<0.05; L-5F 1.39-fold AUC compared to HFD, P<0.05) in the insulin tolerance test. The metabolic test results were associated with (i) decreased hepatic inflammation of SAA1, IL-1ÎČ IFN-Îł and TNFα (2.61-5.97-fold decrease compared to HFD, P<0.05) for both mimetics; (ii) suppression of hepatic mRNA expression of gluconeogenesis-associated genes (PEPCK and G6Pase; 1.66-3.01-fold decrease compared to HFD, P<0.001) for both mimetics; (iii) lipogenic-associated genes, (SREBP1c and ChREBP; 2.15-3.31-fold decrease compared to HFD, P<0.001) for both mimetics and; (iv) reduced hepatic macrophage infiltration (F4/80 and CD68; 1.77-2.15-fold compared to HFD, P<0.001) for both mimetics. CONCLUSION:Apo-AI mimetic peptides treatment led to improved glucose homeostasis. This effect is associated with reduced expression of inflammatory markers in the liver and reduced infiltration of macrophages, suggesting an overall suppression of hepatic inflammation. We also showed altered expression of genes associated with gluconeogenesis and lipid synthesis, suggesting that glucose and lipid synthesis is suppressed. These findings suggest that apoA-I mimetic peptides could be a new therapeutic option to reduce hepatic inflammation that contributes to the development of overnutrition-induced insulin resistance

    Neurological effects in the offspring after switching from tobacco cigarettes to e-cigarettes during pregnancy in a mouse model.

    Full text link
    BACKGROUND:Maternal smoking is currently a public health concern and has been associated with a number of complications in the offspring. E-cigarettes are gaining popularity as a 'safer' alternative to tobacco cigarettes during pregnancy, however, there are a limited number of studies to suggest that it is actually 'safe'. STUDY DESIGN:Balb/C female mice were exposed to ambient air (n = 8; Sham), or tobacco cigarette smoke (n = 8; SE) before gestation, during gestation and lactation. A third group was exposed to cigarette smoke before gestation followed by e-cigarette aerosols during gestation and lactation (n = 8; Switch). Male offspring (12-week old, n = 10-14/group) underwent behavioural assessments to investigate short-term memory, anxiety and activity using the novel object recognition (NOR) and elevated plus maze (EPM) tests. Brains were collected at postnatal day (P)1, P20 and Week13 for global DNA methylation, epigenetic gene expression, and neuronal cell counts. RESULTS:The offspring from mothers switching to e-cigarettes exhibited no change in exploration/activity, but showed a decrease in global DNA methylation, Aurora Kinase (Aurk) A and AurkB gene expression and a reduction in neuronal cell numbers in the cornu ammonis 1 region of the dorsal hippocampus compared to the SE group. CONCLUSIONS:Continuous tobacco cigarette smoke exposure during pregnancy resulted in marked neurological deficits in the offspring. Switching to e-cigarettes during pregnancy reduced these neurological deficits compared to cigarette smoke exposure. However, neurological changes were still observed, so we therefore conclude that e-cigarette use during pregnancy is not advised

    Maternal L-carnitine supplementation improves glucose and lipid profiles in female offspring of dams exposed to cigarette smoke

    Full text link
    © 2018 John Wiley & Sons Australia, Ltd Sex differences in disease susceptibility due to maternal programming have been reported. We previously observed that maternal smoking induced renal disease and neurological changes are restricted to males, while both male and female offspring develop metabolic disorders. We have also found that maternal L-carnitine supplementation during gestation and lactation can significantly improve glucose intolerance and hyperlipidaemia in male offspring. This study aimed to determine whether such beneficial effects can also occur in female offspring. Balb/c female mice were exposed to cigarette smoke (SE) 6 weeks prior to gestation, during gestation and lactation. A subgroup of the SE dams was given L-carnitine (1.5 mmol/L in drinking water) during gestation and lactation. Female offspring were studied at 20 days (weaning) and 13 weeks (adulthood). Maternal smoking increased liver weight (%) and blood glucose levels at 20 days, as well as glucose intolerance and plasma triglycerides levels at adulthood (P <.05). The hepatic lipid metabolic marker adipose triglyceride lipase was downregulated in the SE offspring at 20 days (P <.05). At 13 weeks, the hepatic pro-inflammatory markers IL-1ÎČ and TNF-α mRNA expression were upregulated, while the anti-inflammatory marker IL-10 mRNA expression was downregulated in the SE offspring (P <.05). Liver fibrosis was apparent at 20 days and 13 weeks. Maternal L-carnitine supplementation either normalised or suppressed the detrimental effects induced by maternal smoke exposure (P <.05). We conclude that maternal L-carnitine supplementation improves metabolic parameters in the female offspring of SE dams

    Systematic and Bibliometric Analysis of Magnetite Nanoparticles and Their Applications in (Biomedical) Research

    Full text link
    Abstract Recent reports show air pollutant magnetite nanoparticles (MNPs) in the brains of people with Alzheimer's disease (AD). Considering various field applications of MNPs because of developments in nanotechnology, the aim of this study is to identify major trends and data gaps in research on magnetite to allow for relevant environmental and health risk assessment. Herein, a bibliometric and systematic analysis of the published magnetite literature (n = 31 567) between 1990 to 2020 is completed. Following appraisal, publications (n = 244) are grouped into four time periods with the main research theme identified for each as 1990–1997 “oxides,” 1998–2005 “ferric oxide,” 2006–2013 “pathology,” and 2014–2020 “animal model.” Magnetite formation and catalytic activity dominate the first two time periods, with the last two focusing on the exploitation of nanoparticle engineering. Japan and China have the highest number of citations for articles published. Longitudinal analysis indicates that magnetite research for the past 30 years shifted from environmental and industrial applications, to biomedical and its potential toxic effects. Therefore, whilst this study presents the research profile of different countries, the development in research on MNPs, it also reveals that further studies on the effects of MNPs on human health is much needed

    Maternal E-cigarette exposure in mice alters DNA methylation and lung cytokine expression in offspring

    Full text link
    Copyright © 2018 by the American Thoracic Society E-cigarette usage is increasing, especially among the young, with both the general population and physicians perceiving them as a safe alternative to tobacco smoking. Worryingly, e-cigarettes are commonly used by pregnant women. As nicotine is known to adversely affect children in utero, we hypothesized that nicotine delivered via e-cigarettes would negatively affect lung development. To test this, we developed a mouse model of maternal e-vapor (nicotine and nicotine-free) exposure and investigated the impact on the growth and lung inflammation in both offspring and mothers. Female Balb/c mice were exposed to e-fluid vapor containing nicotine (18 mg/ml nicotine E-cigarette [E-cig18], equivalent to two cigarettes per treatment, twice daily,) or nicotine free (E-cig0 mg/ml) from 6 weeks before mating until pups weaned. Male offspring were studied at Postnatal Day (P) 1, P20, and at 13 weeks. The mothers were studied when the pups weaned. In the mothers' lungs, e-cigarette exposure with and without nicotine increased the proinflammatory cytokines IL-1b, IL-6, and TNF-a. In adult offspring, TNF-a protein levels were increased in both E-cig18 and E-cig0 groups, whereas IL-1b was suppressed. This was accompanied by global changes in DNA methylation. In this study, we found that e-cigarette exposure during pregnancy adversely affected maternal and offspring lung health. As this occurred with both nicotine-free and nicotine-containing e-vapor, the effects are likely due to by-products of vaporization rather than nicotine

    Palmaria palmata (Dulse) as an unusual maritime aetiology of hyperkalemia in a patient with chronic renal failure: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Hyperkalemia is rare in individuals with normal renal function, regardless of dietary intake. This is due to the ability of the kidneys to adapt to increasing serum potassium concentrations. In patients with renal compromise, potassium homeostasis can become impaired. <it>Palmaria palmata </it>(dulse) is an edible seaweed known to be very rich in potassium. We report a case of hyperkalemia precipitated by the consumption of dulse by a patient with known renal disease.</p> <p>Case Presentation</p> <p>A 66-year-old Caucasian woman with diabetes and chronic renal disease presented to our emergency department with nausea, vomiting, and worsening malaise, which had been present for less than a day. She had undergone electrocardiogram monitoring, which showed bradycardia, and periods of asystole. Our patient denied any other symptoms. Laboratory analysis revealed a serum potassium level of 8.6 mmol/L (normal range 3.5 to 4.9 mmol/L). Although our patient was taking some medications known to influence renal function, the only recent change that she could recount was that she had consumed approximately 200 g of dulse within the preceding 24 hours. A diagnosis of hyperkalemia was made, and the patient was treated successfully, and discharged home in her pre-morbid state.</p> <p>Conclusion</p> <p>To the best of our knowledge, this is the first published report of hyperkalemia due to dulse consumption. Dulse is high in potassium, with concentrations upwards of 34 times greater than that found in bananas. Caution should be taken in prescribing medications with potential adverse renal effects for patients with known renal impairment. In such instances, renal function should be monitored closely. Patients should be counseled to avoid dietary sources high in potassium, with particular attention paid to unusual geographical dietary variations.</p

    High density lipoproteins improve insulin sensitivity in high-fat diet-fed mice by suppressing hepatic inflammation

    Full text link
    Obesity-induced liver inflammation can drive insulin resistance. HDL has anti-inflammatory properties, so we hypothesized that low levels of HDL would perpetuate inflammatory responses in the liver and that HDL treatment would suppress liver inflammation and insulin resistance. The aim of this study was to investigate the effects of lipid-free apoAI on hepatic inflammation and insulin resistance in mice. We also investigated apoAI as a component of reconstituted HDLs (rHDLs) in hepatocytes to confirm results we observed in vivo. To test our hypothesis, C57BL/6 mice were fed a high-fat diet (HFD) for 16 weeks and administered either saline or lipid-free apoAI. Injections of lipid-free apoAI twice a week for 2 or 4 weeks with lipid-free apoAI resulted in: i) improved insulin sensitivity associated with decreased systemic and hepatic inflammation; ii) suppression of hepatic mRNA expression for key transcriptional regulators of lipogenic gene expression; and iii) suppression of nuclear factor ÎșB (NF-ÎșB) activation. Human hepatoma HuH-7 cells exposed to rHDLs showed suppressed TNFα-induced NF-ÎșB activation, correlating with decreased NF-ÎșB target gene expression. We conclude that apoAI suppresses liver inflammation in HFD mice and improves insulin resistance via a mechanism that involves a downregulation of NF-ÎșB activation. Copyright © 2014 by the American Society for Biochemistry and Molecular Biology, Inc

    Natural polymorphisms in C. elegans HECW-1 E3 ligase affect pathogen avoidance behaviour

    Get PDF
    available in PMC 2012 June 22.Heritable variation in behavioural traits generally has a complex genetic basis1, and thus naturally occurring polymorphisms that influence behaviour have been defined in only rare instances2,3. The isolation of wild strains of Caenorhabditis elegans has facilitated the study of natural genetic variation in this species4 and provided insights into its diverse microbial ecology5. C. elegans responds to bacterial infection with conserved innate immune responses6-8 and, while lacking the immunological memory of vertebrate adaptive immunity, exhibits an aversive learning response to pathogenic bacteria9. Here, we report the molecular characterization of naturally occurring coding polymorphisms in a C. elegans gene encoding a conserved HECT domain-containing E3 ubiquitin ligase, HECW-1. We show that two distinct polymorphisms in neighbouring residues of HECW-1 each affect C. elegans behavioural avoidance of a lawn of Pseudomonas aeruginosa. Neuronspecific rescue and ablation experiments, and genetic interaction analysis suggest that HECW-1 functions in a pair of sensory neurons to inhibit P. aeruginosa lawn avoidance behaviour through inhibition of the neuropeptide receptor NPR-110, which we have previously shown promotes P. aeruginosa lawn avoidance behaviour11. Our data establish a molecular basis for natural variation in a C. elegans behaviour that may undergo adaptive changes in response to microbial pathogens.National Institutes of Health (U.S.) (NIH Grant GM084477

    A compendium and functional characterization of mammalian genes involved in adaptation to Arctic or Antarctic environments

    Get PDF
    Many mammals are well adapted to surviving in extremely cold environments. These species have likely accumulated genetic changes that help them efficiently cope with low temperatures. It is not known whether the same genes related to cold adaptation in one species would be under selection in another species. The aims of this study therefore were: to create a compendium of mammalian genes related to adaptations to a low temperature environment; to identify genes related to cold tolerance that have been subjected to independent positive selection in several species; to determine promising candidate genes/pathways/organs for further empirical research on cold adaptation in mammals
    • 

    corecore