686 research outputs found

    'Unite and conquer': enhanced prediction of protein subcellular localization by integrating multiple specialized tools

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Knowing the subcellular location of proteins provides clues to their function as well as the interconnectivity of biological processes. Dozens of tools are available for predicting protein location in the eukaryotic cell. Each tool performs well on certain data sets, but their predictions often disagree for a given protein. Since the individual tools each have particular strengths, we set out to integrate them in a way that optimally exploits their potential. The method we present here is applicable to various subcellular locations, but tailored for predicting whether or not a protein is localized in mitochondria. Knowledge of the mitochondrial proteome is relevant to understanding the role of this organelle in global cellular processes.</p> <p>Results</p> <p>In order to develop a method for enhanced prediction of subcellular localization, we integrated the outputs of available localization prediction tools by several strategies, and tested the performance of each strategy with known mitochondrial proteins. The accuracy obtained (up to 92%) surpasses by far the individual tools. The method of integration proved crucial to the performance. For the prediction of mitochondrion-located proteins, integration via a two-layer decision tree clearly outperforms simpler methods, as it allows emphasis of biologically relevant features such as the mitochondrial targeting peptide and transmembrane domains.</p> <p>Conclusion</p> <p>We developed an approach that enhances the prediction accuracy of mitochondrial proteins by uniting the strength of specialized tools. The combination of machine-learning based integration with biological expert knowledge leads to improved performance. This approach also alleviates the conundrum of how to choose between conflicting predictions. Our approach is easy to implement, and applicable to predicting subcellular locations other than mitochondria, as well as other biological features. For a trial of our approach, we provide a webservice for mitochondrial protein prediction (named YimLOC), which can be accessed through the AnaBench suite at http://anabench.bcm.umontreal.ca/anabench/. The source code is provided in the Additional File <supplr sid="S2">2</supplr>.</p> <suppl id="S2"> <title> <p>Additional file 2</p> </title> <text> <p>This file contains scripts for the online server YimLOC. Please note that there scripts only codes for the ready-to-use STACK-mem-DT described in the main text. The scripts do not provide the training process.</p> </text> <file name="1471-2105-8-420-S2.pdf"> <p>Click here for file</p> </file> </suppl

    Levels of Polychlorinated Biphenyls (PCBs) and Three Organochlorine Pesticides in Fish from the Aleutian Islands of Alaska

    Get PDF
    Persistent organic pollutants (POPs), including polychlorinated biphenyls (PCBs) and chlorinated pesticides, have been shown to have many adverse human health effects. These contaminants therefore may pose a risk to Alaska Natives that follow a traditional diet high in marine mammals and fish, in which POPs bioaccumulate.This study examined the levels of PCBs and three pesticides [p, p'-DDE, mirex, and hexachlorobenzene (HCB)] in muscle tissue from nine fish species from several locations around the Aleutian Islands of Alaska. The highest median PCB level was found in rock sole (Lepidopsetta bilineata, 285 ppb, wet weight), while the lowest level was found in rock greenling (Hexagrammos lagocephalus, 104 ppb, wet weight). Lipid adjusted PCB values were also calculated and significant interspecies differences were found. Again, rock sole had the highest level (68,536 ppb, lipid weight). Concerning the PCB congener patterns, the more highly chlorinated congeners were most common as would be expected due to their greater persistence. Among the pesticides, p, p'-DDE generally dominated, and the highest level was found in sockeye salmon (Oncorhynchus nerka, 6.9 ppb, wet weight). The methodology developed by U.S. Environmental Protection Agency (USEPA) was used to calculate risk-based consumption limits for the analyzed fish species. For cancer health endpoints for PCBs, all species would trigger strict advisories of between two and six meals per year, depending upon species. For noncancer effects by PCBs, advisories of between seven and twenty-two meals per year were triggered. None of the pesticides triggered consumption limits.The fish analyzed, mainly from Adak, contain significant concentrations of POPs, in particular PCBs, which raises the question whether these fish are safe to eat, particularly for sensitive populations. However when assessing any risk of the traditional diet, one must also consider the many health and cultural benefits from eating fish

    PRED_PPI: a server for predicting protein-protein interactions based on sequence data with probability assignment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protein-protein interactions (PPIs) are crucial for almost all cellular processes, including metabolic cycles, DNA transcription and replication, and signaling cascades. Given the importance of PPIs, several methods have been developed to detect them. Since the experimental methods are time-consuming and expensive, developing computational methods for effectively identifying PPIs is of great practical significance.</p> <p>Findings</p> <p>Most previous methods were developed for predicting PPIs in only one species, and do not account for probability estimations. In this work, a relatively comprehensive prediction system was developed, based on a support vector machine (SVM), for predicting PPIs in five organisms, specifically humans, yeast, <it>Drosophila</it>, <it>Escherichia coli</it>, and <it>Caenorhabditis elegans</it>. This PPI predictor includes the probability of its prediction in the output, so it can be used to assess the confidence of each SVM prediction by the probability assignment. Using a probability of 0.5 as the threshold for assigning class labels, the method had an average accuracy for detecting protein interactions of 90.67% for humans, 88.99% for yeast, 90.09% for <it>Drosophila</it>, 92.73% for <it>E. coli</it>, and 97.51% for <it>C. elegans</it>. Moreover, among the correctly predicted pairs, more than 80% were predicted with a high probability of ≥0.8, indicating that this tool could predict novel PPIs with high confidence.</p> <p>Conclusions</p> <p>Based on this work, a web-based system, Pred_PPI, was constructed for predicting PPIs from the five organisms. Users can predict novel PPIs and obtain a probability value about the prediction using this tool. Pred_PPI is freely available at <url>http://cic.scu.edu.cn/bioinformatics/predict_ppi/default.html</url>.</p

    Annual variation in the levels of transcripts of sex-specific genes in the mantle of the common mussel, Mytilus edulis

    Get PDF
    Mytilus species are used as sentinels for the assessment of environmental health but sex or stage in the reproduction cycle is rarely considered even though both parameters are likely to influence responses to pollution. We have validated the use of a qPCR assay for sex identification and related the levels of transcripts to the reproductive cycle. A temporal study of mantle of Mytilus edulis found transcripts of male-specific vitelline coat lysin (VCL) and female-specific vitelline envelope receptor for lysin (VERL) could identify sex over a complete year. The levels of VCL/VERL were proportional to the numbers of sperm/ova and are indicative of the stage of the reproductive cycle. Maximal levels of VCL and VERL were found in February 2009 declining to minima between July - August before increasing and re-attaining a peak in February 2010. Water temperature may influence these transitions since they coincide with minimal water temperature in February and maximal temperature in August. An identical pattern of variation was found for a cryptic female-specific transcript (H5) but a very different pattern was observed for oestrogen receptor 2 (ER2). ER2 varied in a sex-specific way with male > female for most of the cycle, with a female maxima in July and a male maxima in December. Using artificially spawned animals, the transcripts for VCL, VERL and H5 were shown to be present in gametes and thus their disappearance from mantle is indicative of spawning. VCL and VERL are present at equivalent levels in February and July-August but during gametogenesis (August to January) and spawning (March to June) VCL is present at lower relative amounts than VERL. This may indicate sex-specific control mechanisms for these processes and highlight a potential pressure point leading to reduced reproductive output if environmental factors cause asynchrony to gamete maturation or release

    The Effect of Bacterial Infection on the Biomechanical Properties of Biological Mesh in a Rat Model

    Get PDF
    BACKGROUND: The use of biologic mesh to repair abdominal wall defects in contaminated surgical fields is becoming the standard of practice. However, failure rates and infections of these materials persist clinically. The purpose of this study was to determine the mechanical properties of biologic mesh in response to a bacterial encounter. METHODS: A rat model of Staphylococcus aureus colonization and infection of subcutaneously implanted biologic mesh was used. Samples of biologic meshes (acellular human dermis (ADM) and porcine small intestine submucosa (SIS)) were inoculated with various concentrations of methicillin-resistant Staphylococcus aureus [10(5), 10(9) colony-forming units] or saline (control) prior to wound closure (n = 6 per group). After 10 or 20 days, meshes were explanted, and cultured for bacteria. Histological changes and bacterial recovery together with biomechanical properties were assessed. Data were compared using a 1-way ANOVA or a Mann-Whitney test, with p<0.05. RESULTS: The overall rate of staphylococcal mesh colonization was 81% and was comparable in the ADM and SIS groups. Initially (day 0) both biologic meshes had similar biomechanical properties. However after implantation, the SIS control material was significantly weaker than ADM at 20 days (p = 0.03), but their corresponding modulus of elasticity were similar at this time point (p>0.05). After inoculation with MRSA, a time, dose and material dependent decrease in the ultimate tensile strength and modulus of elasticity of SIS and ADM were noted compared to control values. CONCLUSION: The biomechanical properties of biologic mesh significantly decline after colonization with MRSA. Surgeons selecting a repair material should be aware of its biomechanical fate relative to other biologic materials when placed in a contaminated environment

    TESTLoc: protein subcellular localization prediction from EST data

    Get PDF
    Abstract Background The eukaryotic cell has an intricate architecture with compartments and substructures dedicated to particular biological processes. Knowing the subcellular location of proteins not only indicates how bio-processes are organized in different cellular compartments, but also contributes to unravelling the function of individual proteins. Computational localization prediction is possible based on sequence information alone, and has been successfully applied to proteins from virtually all subcellular compartments and all domains of life. However, we realized that current prediction tools do not perform well on partial protein sequences such as those inferred from Expressed Sequence Tag (EST) data, limiting the exploitation of the large and taxonomically most comprehensive body of sequence information from eukaryotes. Results We developed a new predictor, TESTLoc, suited for subcellular localization prediction of proteins based on their partial sequence conceptually translated from ESTs (EST-peptides). Support Vector Machine (SVM) is used as computational method and EST-peptides are represented by different features such as amino acid composition and physicochemical properties. When TESTLoc was applied to the most challenging test case (plant data), it yielded high accuracy (~85%). Conclusions TESTLoc is a localization prediction tool tailored for EST data. It provides a variety of models for the users to choose from, and is available for download at http://megasun.bch.umontreal.ca/~shenyq/TESTLoc/TESTLoc.html</p

    Attentional Processing of Food Cues in Overweight and Obese Individuals

    Get PDF
    The incentive sensitization model of obesity hypothesizes that obese individuals in the western world have acquired an enhanced attention bias to food cues, because of the overwhelming exposure to food. This article gives an overview of recent studies regarding attention to food and obesity. In general, an interesting approach-avoidance pattern in food-related attention has been found in overweight/obese individuals in a number of studies. However, it should be noted that study results are contradictory. This might be due to methodological issues, such as the choice of attention measurements, possibly tapping different underlying components of information processing. Although attention research is challenging, researchers are encouraged to further explore important issues, such as the exact circumstances in which obese persons demonstrate enhanced attention to food, the directional relationship between food-related attention bias, overeating and weight gain, and the underlying involvement of the reward system. Knowledge on these issues could help improve treatment programs

    Effect of chemokine receptor CXCR4 on hypoxia-induced pulmonary hypertension and vascular remodeling in rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>CXCR4 is the receptor for chemokine CXCL12 and reportedly plays an important role in systemic vascular repair and remodeling, but the role of CXCR4 in development of pulmonary hypertension and vascular remodeling has not been fully understood.</p> <p>Methods</p> <p>In this study we investigated the role of CXCR4 in the development of pulmonary hypertension and vascular remodeling by using a CXCR4 inhibitor AMD3100 and by electroporation of CXCR4 shRNA into bone marrow cells and then transplantation of the bone marrow cells into rats.</p> <p>Results</p> <p>We found that the CXCR4 inhibitor significantly decreased chronic hypoxia-induced pulmonary hypertension and vascular remodeling in rats and, most importantly, we found that the rats that were transplanted with the bone marrow cells electroporated with CXCR4 shRNA had significantly lower mean pulmonary pressure (mPAP), ratio of right ventricular weight to left ventricular plus septal weight (RV/(LV+S)) and wall thickness of pulmonary artery induced by chronic hypoxia as compared with control rats.</p> <p>Conclusions</p> <p>The hypothesis that CXCR4 is critical in hypoxic pulmonary hypertension in rats has been demonstrated. The present study not only has shown an inhibitory effect caused by systemic inhibition of CXCR4 activity on pulmonary hypertension, but more importantly also has revealed that specific inhibition of the CXCR4 in bone marrow cells can reduce pulmonary hypertension and vascular remodeling via decreasing bone marrow derived cell recruitment to the lung in hypoxia. This study suggests a novel therapeutic approach for pulmonary hypertension by inhibiting bone marrow derived cell recruitment.</p
    corecore