27 research outputs found
Key stages in mammary gland development: The cues that regulate ductal branching morphogenesis
Part of how the mammary gland fulfills its function of producing and delivering adequate amounts of milk is by forming an extensive tree-like network of branched ducts from a rudimentary epithelial bud. This process, termed branching morphogenesis, begins in fetal development, pauses after birth, resumes in response to estrogens at puberty, and is refined in response to cyclic ovarian stimulation once the margins of the mammary fat pad are met. Thus it is driven by systemic hormonal stimuli that elicit local paracrine interactions between the developing epithelial ducts and their adjacent embryonic mesenchyme or postnatal stroma. This local cellular cross-talk, in turn, orchestrates the tissue remodeling that ultimately produces a mature ductal tree. Although the precise mechanisms are still unclear, our understanding of branching in the mammary gland and elsewhere is rapidly improving. Moreover, many of these mechanisms are hijacked, bypassed, or corrupted during the development and progression of cancer. Thus a clearer understanding of the underlying endocrine and paracrine pathways that regulate mammary branching may shed light on how they contribute to cancer and how their ill effects might be overcome or entirely avoided
Plasmodium falciparum genetic variation of var2csa in the Democratic Republic of the Congo
Background: The Democratic Republic of the Congo (DRC) bears a high burden of malaria, which is exacerbated in pregnant women. The VAR2CSA protein plays a crucial role in pregnancy-associated malaria (PAM), and hence quantifying diversity at the var2csa locus in the DRC is important in understanding the basic epidemiology of PAM, and in developing a robust vaccine against PAM. Methods: Samples were taken from the 2013–14 Demographic and Health Survey conducted in the DRC, focusing on children under 5 years of age. A short subregion of the var2csa gene was sequenced in 115 spatial clusters, giving country-wide estimates of sequence polymorphism and spatial population structure. Results: Results indicate that var2csa is highly polymorphic, and that diversity is being maintained through balancing selection, however, there is no clear signal of phylogenetic or geographic structure to this diversity. Linear modelling demonstrates that the number of var2csa variants in a cluster correlates directly with cluster prevalence, but not with other epidemiological factors such as urbanicity. Conclusions: Results suggest that the DRC fts within the global pattern of high var2csa diversity and little genetic diferentiation between regions. A broad multivalent VAR2CSA vaccine candidate could beneft from targeting stable regions and common variants to address the substantial genetic diversity