96 research outputs found

    Chasing the immortal strand: evidence for nature's way of protecting the breast genome

    Get PDF
    Mutations arise during cell division at a predictable rate. Besides DNA repair mechanisms, the existence of cellular hierarchies that originate with a stem cell serve to reduce the number of divisions necessary for normal physiology. In a previous issue, Bussard and colleagues demonstrate that mammary stem cells have an additional remarkable trait; namely the ability to selectively retain a template DNA strand during self renewal. In doing so, they avoid the accumulation of mutations in that so called 'immortal strand'. The implications of this are discussed with reference to the development and treatment of cancer

    Slugging their way to immortality: driving mammary epithelial cells into a stem cell-like state

    Get PDF
    Delineating the molecular factors that define and maintain the mammary stem cell state is vital for understanding normal development and tumourigenesis. A recent study by Guo and colleagues identifies two master transcriptional regulators of mammary stem cells, Slug and Sox9, ectopic expression of which confers stem cell attributes on differentiated mammary epithelial cells. Slug and Sox9 expression was also shown to determine in vivo metastatic potential of human breast cancer cell lines. Understanding these factors in the context of normal lineage differentiation is an important step toward elucidating the mammary epithelial cell hierarchy and the origins of cancer stem cells

    The more things change ... the more things change: developmental plasticity of tumor-initiating mammary epithelial cells

    Get PDF
    In our haste to find and eliminate breast cancer stem cells, it appears as though we may have missed something. Contrary to current thought, a recent paper by Meyer and colleagues demonstrates developmental plasticity of breast cancer cells with respect to the CD24 cell surface marker, such that CD44pos; CD24pos and CD44pos; CD24low/- cells are able to give rise to one another in an activin/nodal-dependent manner, and that cells derived from single cells of either phenotype are capable of forming tumors as xenografts. If confirmed clinically, these data imply that simply targeting the CD44pos; CD24low/- breast cancer stem cell for breast cancer treatment may be destined to fail unless this plasticity is taken into account and prevented

    Nontransgenic models of breast cancer

    Get PDF
    Numerous models have been developed to address key elements in the biology of breast cancer development and progression. No model is ideal, but the most useful are those that reflect the natural history and histopathology of human disease, and allow for basic investigations into underlying cellular and molecular mechanisms. We describe two types of models: those that are directed toward early events in breast cancer development (hyperplastic alveolar nodules [HAN] murine model, MCF10AT human xenograft model); and those that seek to reflect the spectrum of metastatic disease (murine sister cell lines 67, 168, 4T07, 4T1). Collectively, these models provide cell lines that represent all of the sequential stages of progression in breast disease, which can be modified to test the effect of genetic changes

    Prolactin signaling and Stat5: going their own separate ways?

    Get PDF
    Miyoshi et al. compared the role of the prolactin receptor (PrlR) and its downstream mediator, the signal transducer and activator of transcription 5 (Stat5), in mammary epithelial cells in vivo by studying PrlR(-/-) and Stat5ab(-/-) mouse mammary epithelial transplants during pregnancy. At first glance, the two mutant epithelia appear to have similar defects in the differentiation of the alveolar epithelium. However, a closer examination by Miyoshi et al. revealed defects in the epithelial architecture of the smallest ducts of Stat5ab(-/-) transplants not apparent in the PrlR(-/-) transplants, suggesting that Stat5 is more than a simple mediator of PrlR action

    Does the immune reaction cause malignant transformation by disrupting cell-to-cell or cell-to-matrix communications?

    Get PDF
    Tumor progression: In many (perhaps in all) tumor systems, a malignant cancer is preceded by a benign lesion. Most benign lesions do not transform to malignancy and many regress. The final transformative step to malignancy differs from the preceding steps in, among other things, that it often occurs in the absence of the original carcinogenic stimulus. Mechanism of immunostimulation: Relatively low titers of specific immune reactants are known to stimulate, but cell-to-cell or cell-to-matrix interactions appear to be major inhibitors of tumor-growth. Therefore, it seems reasonable to hypothesize that the mechanism of immunostimulation may be an interference with cell-to-cell or cell-to-matrix communication by a sub-lethal immune-reaction. Discussion: While the above hypothesis remains unproven, some evidence suggests that immunity may have a major facilitating effect on tumor growth especially at the time of malignant transformation. There is even some evidence suggesting that transformation in vivo may seldom occur in the absence of immunostimulation of the premalignant lesion. Positive selection by the immune reaction may be the reason that tumors are immunogenic

    New highlights on stroma–epithelial interactions in breast cancer

    Get PDF
    Although the stroma in which carcinomas arise has been previously regarded as a bystander to the clonal expansion and acquisition of malignant characteristics of tumor cells, it is now generally acknowledged that stromal changes are required for the establishment of cancer. In the present article, we discuss three recent publications that highlight the complex role the stroma has during the development of cancer and the potential for targeting the stroma by therapeutic approaches

    Keratin 6 is not essential for mammary gland development

    Get PDF
    INTRODUCTION: Keratin 6 (K6) has previously been identified as a marker of early mammary gland development and has also been proposed to be a marker of mammary gland progenitor cells. However, the function of K6 in the mammary gland was not known, so we examined the expression pattern of the protein during both embryonic and postnatal mammary development, as well as the mammary gland phenotype of mice that were null for both K6a and K6b isoforms. METHOD: Immunostaining was performed to determine the expression pattern of K6a throughout mammary gland development, from the embryonic mammary bud to lactation. Double immunofluorescence was used to co-localize K6 with known markers of mammary gland development. Wild-type and K6ab-null mammary tissues were transplanted into the cleared fat pads of nude mice and the outgrowths were analyzed for morphology by whole-mount staining and for markers of mammary epithelium by immunostaining. Finally, progesterone receptor (PR) and bromodeoxyuridine co-localization was quantified by double immunofluorescence in wild-type and K6ab-null mammary outgrowths. RESULTS: Here we report that K6 is expressed earlier than described previously, by embryonic day 16.5. K6a is the predominant isoform expressed in the mammary gland, localized in the body cells and luminal epithelial cells but not in the cap cells or myoepithelial cells. Co-localization studies showed that most K6a-positive cells express steroid receptors but do not proliferate. When both the K6a and K6b genes are deleted, mammary gland development appears normal, with similar expression of most molecular markers examined in both the pubertal gland and the mature gland. Loss of K6a and K6b, however, leads to an increase in the number of steroid-receptor-positive cells, and increased co-localization of steroid receptor expression and proliferation was observed. CONCLUSION: Although K6a was not essential for mammary gland development, loss of both K6a and K6b resulted in an increase in PR-positive mammary epithelial cells and decreased proliferation after exposure to steroid hormones. There was also increased co-localization of PR and bromodeoxyuridine, suggesting alterations in patterning events important for normal lobuloalveolar development
    corecore