9,661 research outputs found

    Distributional Modes for Scalar Field Quantization

    Get PDF
    We propose a mode-sum formalism for the quantization of the scalar field based on distributional modes, which are naturally associated with a slight modification of the standard plane-wave modes. We show that this formalism leads to the standard Rindler temperature result, and that these modes can be canonically defined on any Cauchy surface.Comment: 15 pages, RevTe

    A New Approach to Time Domain Classification of Broadband Noise in Gravitational Wave Data

    Get PDF
    Broadband noise in gravitational wave (GW) detectors, also known as triggers, can often be a deterrant to the efficiency with which astrophysical search pipelines detect sources. It is important to understand their instrumental or environmental origin so that they could be eliminated or accounted for in the data. Since the number of triggers is large, data mining approaches such as clustering and classification are useful tools for this task. Classification of triggers based on a handful of discrete properties has been done in the past. A rich information content is available in the waveform or 'shape' of the triggers that has had a rather restricted exploration so far. This paper presents a new way to classify triggers deriving information from both trigger waveforms as well as their discrete physical properties using a sequential combination of the Longest Common Sub-Sequence (LCSS) and LCSS coupled with Fast Time Series Evaluation (FTSE) for waveform classification and the multidimensional hierarchical classification (MHC) analysis for the grouping based on physical properties. A generalized k-means algorithm is used with the LCSS (and LCSS+FTSE) for clustering the triggers using a validity measure to determine the correct number of clusters in absence of any prior knowledge. The results have been demonstrated by simulations and by application to a segment of real LIGO data from the sixth science run.Comment: 16 pages, 16 figure

    On a Recent Construction of "Vacuum-like" Quantum Field States in Curved Spacetime

    Full text link
    Afshordi, Aslanbeigi and Sorkin have recently proposed a construction of a distinguished "S-J state" for scalar field theory in (bounded regions of) general curved spacetimes. We establish rigorously that the proposal is well-defined on globally hyperbolic spacetimes or spacetime regions that can be embedded as relatively compact subsets of other globally hyperbolic spacetimes, and also show that, whenever the proposal is well-defined, it yields a pure quasifree state. However, by explicitly considering portions of ultrastatic spacetimes, we show that the S-J state is not in general a Hadamard state. In the specific case where the Cauchy surface is a round 3-sphere, we prove that the representation induced by the S-J state is generally not unitarily equivalent to that of a Hadamard state, and indeed that the representations induced by S-J states on nested regions of the ultrastatic spacetime also fail to be unitarily equivalent in general. The implications of these results are discussed.Comment: 25pp, LaTeX. v2 References added, typos corrected. To appear in Class Quantum Gravit

    Cross-shell excitation in two-proton knockout: Structure of 52^{52}Ca

    Get PDF
    The two-proton knockout reaction 9^9Be(54^{54}Ti,52^{52}Ca+γ + \gamma) has been studied at 72 MeV/nucleon. Besides the strong feeding of the 52^{52}Ca ground state, the only other sizeable cross section proceeds to a 3^- level at 3.9 MeV. There is no measurable direct yield to the first excited 2+^+ state at 2.6 MeV. The results illustrate the potential of such direct reactions for exploring cross-shell proton excitations in neutron-rich nuclei and confirms the doubly-magic nature of 52^{52}Ca

    Spectroscopy of the odd-odd fp-shell nucleus 52Sc from secondary fragmentation

    Get PDF
    The odd-odd fp-shell nucleus 52Sc was investigated using in-beam gamma-ray spectroscopy following secondary fragmentation of a 55V and 57Cr cocktail beam. Aside from the known gamma-ray transition at 674(5)keV, a new decay at E_gamma=212(3) keV was observed. It is attributed to the depopulation of a low-lying excited level. This new state is discussed in the framework of shell-model calculations with the GXPF1, GXPF1A, and KB3G effective interactions. These calculations are found to be fairly robust for the low-lying level scheme of 52Sc irrespective of the choice of the effective interaction. In addition, the frequency of spin values predicted by the shell model is successfully modeled by a spin distribution formulated in a statistical approach with an empirical, energy-independent spin-cutoff parameter.Comment: accepted for publication in PR

    Somewhere in the Universe: Where is the Information Stored When Histories Decohere?

    Get PDF
    We investigate the idea that decoherence is connected with the storage of information about the decohering system somewhere in the universe. The known connection between decoherence of histories and the existence of records is extended from the case of pure initial states to mixed states. Records may still exist but are necessarily imperfect. We formulate an information-theoretic conjecture about decoherence due to an environment: the number of bits required to describe a set of decoherent histories is approximately equal to the number of bits of information thrown away to the environment in the coarse-graining process. This idea is verified in a simple model consisting of a particle coupled to an environment that can store only one bit of information. We explore the decoherence and information storage in the quantum Brownian motion model. It is shown that the variables that the environment naturally measures and stores information about are the Fourier components of the function x(t)x(t) (describing the particle trajectory). The records storing the information about the Fourier modes are the positions and momenta of the environmental oscillators at the final time. Decoherence is possible even if there is only one oscillator in the environment. The information count of the histories and records in the environment add up according to our conjecture. These results give quantitative content to the idea that decoherence is related to ``information lost''.Comment: 48 pages, plain Tex. Second revisio

    Systematics of the Relationship between Vacuum Energy Calculations and Heat Kernel Coefficients

    Get PDF
    Casimir energy is a nonlocal effect; its magnitude cannot be deduced from heat kernel expansions, even those including the integrated boundary terms. On the other hand, it is known that the divergent terms in the regularized (but not yet renormalized) total vacuum energy are associated with the heat kernel coefficients. Here a recent study of the relations among the eigenvalue density, the heat kernel, and the integral kernel of the operator etHe^{-t\sqrt{H}} is exploited to characterize this association completely. Various previously isolated observations about the structure of the regularized energy emerge naturally. For over 20 years controversies have persisted stemming from the fact that certain (presumably physically meaningful) terms in the renormalized vacuum energy density in the interior of a cavity become singular at the boundary and correlate to certain divergent terms in the regularized total energy. The point of view of the present paper promises to help resolve these issues.Comment: 19 pages, RevTeX; Discussion section rewritten in response to referees' comments, references added, minor typos correcte

    First-principles study of orthorhombic CdTiO3 perovskite

    Full text link
    In this work we perform an ab-initio study of CdTiO3 perovskite in its orthorhombic phase using FLAPW method. Our calculations help to decide between the different cristallographic structures proposed for this perovskite from X-Ray measurements. We compute the electric field gradient tensor (EFG) at Cd site and obtain excellent agreement with available experimental information from a perturbed angular correlation (PAC) experiment. We study EFG under an isotropic change of volume and show that in this case the widely used "point charge model approximation" to determine EFG works quite well.Comment: 4 pages, 1 figure. Accepted in Physical Review
    corecore