9,661 research outputs found
Distributional Modes for Scalar Field Quantization
We propose a mode-sum formalism for the quantization of the scalar field
based on distributional modes, which are naturally associated with a slight
modification of the standard plane-wave modes. We show that this formalism
leads to the standard Rindler temperature result, and that these modes can be
canonically defined on any Cauchy surface.Comment: 15 pages, RevTe
A New Approach to Time Domain Classification of Broadband Noise in Gravitational Wave Data
Broadband noise in gravitational wave (GW) detectors, also known as triggers,
can often be a deterrant to the efficiency with which astrophysical search
pipelines detect sources. It is important to understand their instrumental or
environmental origin so that they could be eliminated or accounted for in the
data. Since the number of triggers is large, data mining approaches such as
clustering and classification are useful tools for this task. Classification of
triggers based on a handful of discrete properties has been done in the past. A
rich information content is available in the waveform or 'shape' of the
triggers that has had a rather restricted exploration so far. This paper
presents a new way to classify triggers deriving information from both trigger
waveforms as well as their discrete physical properties using a sequential
combination of the Longest Common Sub-Sequence (LCSS) and LCSS coupled with
Fast Time Series Evaluation (FTSE) for waveform classification and the
multidimensional hierarchical classification (MHC) analysis for the grouping
based on physical properties. A generalized k-means algorithm is used with the
LCSS (and LCSS+FTSE) for clustering the triggers using a validity measure to
determine the correct number of clusters in absence of any prior knowledge. The
results have been demonstrated by simulations and by application to a segment
of real LIGO data from the sixth science run.Comment: 16 pages, 16 figure
On a Recent Construction of "Vacuum-like" Quantum Field States in Curved Spacetime
Afshordi, Aslanbeigi and Sorkin have recently proposed a construction of a
distinguished "S-J state" for scalar field theory in (bounded regions of)
general curved spacetimes. We establish rigorously that the proposal is
well-defined on globally hyperbolic spacetimes or spacetime regions that can be
embedded as relatively compact subsets of other globally hyperbolic spacetimes,
and also show that, whenever the proposal is well-defined, it yields a pure
quasifree state. However, by explicitly considering portions of ultrastatic
spacetimes, we show that the S-J state is not in general a Hadamard state. In
the specific case where the Cauchy surface is a round 3-sphere, we prove that
the representation induced by the S-J state is generally not unitarily
equivalent to that of a Hadamard state, and indeed that the representations
induced by S-J states on nested regions of the ultrastatic spacetime also fail
to be unitarily equivalent in general. The implications of these results are
discussed.Comment: 25pp, LaTeX. v2 References added, typos corrected. To appear in Class
Quantum Gravit
Cross-shell excitation in two-proton knockout: Structure of Ca
The two-proton knockout reaction Be(Ti,Ca) has
been studied at 72 MeV/nucleon. Besides the strong feeding of the Ca
ground state, the only other sizeable cross section proceeds to a 3 level
at 3.9 MeV. There is no measurable direct yield to the first excited 2
state at 2.6 MeV. The results illustrate the potential of such direct reactions
for exploring cross-shell proton excitations in neutron-rich nuclei and
confirms the doubly-magic nature of Ca
Spectroscopy of the odd-odd fp-shell nucleus 52Sc from secondary fragmentation
The odd-odd fp-shell nucleus 52Sc was investigated using in-beam gamma-ray
spectroscopy following secondary fragmentation of a 55V and 57Cr cocktail beam.
Aside from the known gamma-ray transition at 674(5)keV, a new decay at
E_gamma=212(3) keV was observed. It is attributed to the depopulation of a
low-lying excited level. This new state is discussed in the framework of
shell-model calculations with the GXPF1, GXPF1A, and KB3G effective
interactions. These calculations are found to be fairly robust for the
low-lying level scheme of 52Sc irrespective of the choice of the effective
interaction. In addition, the frequency of spin values predicted by the shell
model is successfully modeled by a spin distribution formulated in a
statistical approach with an empirical, energy-independent spin-cutoff
parameter.Comment: accepted for publication in PR
Somewhere in the Universe: Where is the Information Stored When Histories Decohere?
We investigate the idea that decoherence is connected with the storage of
information about the decohering system somewhere in the universe. The known
connection between decoherence of histories and the existence of records is
extended from the case of pure initial states to mixed states. Records may
still exist but are necessarily imperfect. We formulate an
information-theoretic conjecture about decoherence due to an environment: the
number of bits required to describe a set of decoherent histories is
approximately equal to the number of bits of information thrown away to the
environment in the coarse-graining process. This idea is verified in a simple
model consisting of a particle coupled to an environment that can store only
one bit of information. We explore the decoherence and information storage in
the quantum Brownian motion model. It is shown that the variables that the
environment naturally measures and stores information about are the Fourier
components of the function (describing the particle trajectory). The
records storing the information about the Fourier modes are the positions and
momenta of the environmental oscillators at the final time. Decoherence is
possible even if there is only one oscillator in the environment. The
information count of the histories and records in the environment add up
according to our conjecture. These results give quantitative content to the
idea that decoherence is related to ``information lost''.Comment: 48 pages, plain Tex. Second revisio
Systematics of the Relationship between Vacuum Energy Calculations and Heat Kernel Coefficients
Casimir energy is a nonlocal effect; its magnitude cannot be deduced from
heat kernel expansions, even those including the integrated boundary terms. On
the other hand, it is known that the divergent terms in the regularized (but
not yet renormalized) total vacuum energy are associated with the heat kernel
coefficients. Here a recent study of the relations among the eigenvalue
density, the heat kernel, and the integral kernel of the operator
is exploited to characterize this association completely.
Various previously isolated observations about the structure of the regularized
energy emerge naturally. For over 20 years controversies have persisted
stemming from the fact that certain (presumably physically meaningful) terms in
the renormalized vacuum energy density in the interior of a cavity become
singular at the boundary and correlate to certain divergent terms in the
regularized total energy. The point of view of the present paper promises to
help resolve these issues.Comment: 19 pages, RevTeX; Discussion section rewritten in response to
referees' comments, references added, minor typos correcte
First-principles study of orthorhombic CdTiO3 perovskite
In this work we perform an ab-initio study of CdTiO3 perovskite in its
orthorhombic phase using FLAPW method. Our calculations help to decide between
the different cristallographic structures proposed for this perovskite from
X-Ray measurements. We compute the electric field gradient tensor (EFG) at Cd
site and obtain excellent agreement with available experimental information
from a perturbed angular correlation (PAC) experiment. We study EFG under an
isotropic change of volume and show that in this case the widely used "point
charge model approximation" to determine EFG works quite well.Comment: 4 pages, 1 figure. Accepted in Physical Review
- …