27,372 research outputs found

    Pomme de terre potato in French -A Geolinguistic Analysis of Lexical Variation-

    Get PDF

    Bounded Optimal Exploration in MDP

    Full text link
    Within the framework of probably approximately correct Markov decision processes (PAC-MDP), much theoretical work has focused on methods to attain near optimality after a relatively long period of learning and exploration. However, practical concerns require the attainment of satisfactory behavior within a short period of time. In this paper, we relax the PAC-MDP conditions to reconcile theoretically driven exploration methods and practical needs. We propose simple algorithms for discrete and continuous state spaces, and illustrate the benefits of our proposed relaxation via theoretical analyses and numerical examples. Our algorithms also maintain anytime error bounds and average loss bounds. Our approach accommodates both Bayesian and non-Bayesian methods.Comment: In Proceedings of the 30th AAAI Conference on Artificial Intelligence (AAAI), 201

    Deep Learning without Poor Local Minima

    Get PDF
    In this paper, we prove a conjecture published in 1989 and also partially address an open problem announced at the Conference on Learning Theory (COLT) 2015. With no unrealistic assumption, we first prove the following statements for the squared loss function of deep linear neural networks with any depth and any widths: 1) the function is non-convex and non-concave, 2) every local minimum is a global minimum, 3) every critical point that is not a global minimum is a saddle point, and 4) there exist "bad" saddle points (where the Hessian has no negative eigenvalue) for the deeper networks (with more than three layers), whereas there is no bad saddle point for the shallow networks (with three layers). Moreover, for deep nonlinear neural networks, we prove the same four statements via a reduction to a deep linear model under the independence assumption adopted from recent work. As a result, we present an instance, for which we can answer the following question: how difficult is it to directly train a deep model in theory? It is more difficult than the classical machine learning models (because of the non-convexity), but not too difficult (because of the nonexistence of poor local minima). Furthermore, the mathematically proven existence of bad saddle points for deeper models would suggest a possible open problem. We note that even though we have advanced the theoretical foundations of deep learning and non-convex optimization, there is still a gap between theory and practice.Comment: In NIPS 2016. Selected for NIPS oral presentation (top 2% submissions). ---- The final NIPS 2016 version: the results remain the sam
    • …
    corecore