2,390 research outputs found

    Characterization of Lower Blood Lead Levels Reported for New Hampshire Adults from 2009–2013

    Get PDF

    Metal-insulator transition induced by 16O -18O oxygen isotope exchange in colossal negative magnetoresistance manganites

    Get PDF
    The effect of 16O-18O isotope exchange on the electric resistivity was studied for (La(1-y)Pr(y))0.7Ca0.3MnO3 ceramic samples. Depending on y, this mixed perovskite exhibited different types of low-temperature behavior ranging from ferromagnetic metal (FM) to charge ordered (CO) antiferromagnetic insulator. It was found that at y=0.75, the substitution of 16O by 18O results in the reversible transition from a FM to a CO insulator at zero magnetic field. The applied magnetic field (H >= 2 T) transformed the sample with 18O again to the metallic state and caused the increase in the FM transition temperature Tc of the 16O sample. As a result, the isotope shift of Tc at H = 2 T was as high as 63 K. Such unique sensitivity of the system to oxygen isotope exchange, giving rise even to the metal-insulator transition, is discussed in terms of the isotope dependence of the effective electron bandwidth which shifts the balance between the CO and FM phases.Comment: 5 pages (RevTeX), 2 eps figures included, to appear in J. Appl. Phys. 83, (1998

    Optimizing Information Freshness in Wireless Networks under General Interference Constraints

    Full text link
    Age of information (AoI) is a recently proposed metric for measuring information freshness. AoI measures the time that elapsed since the last received update was generated. We consider the problem of minimizing average and peak AoI in a wireless networks, consisting of a set of source-destination links, under general interference constraints. When fresh information is always available for transmission, we show that a stationary scheduling policy is peak age optimal. We also prove that this policy achieves average age that is within a factor of two of the optimal average age. In the case where fresh information is not always available, and packet/information generation rate has to be controlled along with scheduling links for transmission, we prove an important separation principle: the optimal scheduling policy can be designed assuming fresh information, and independently, the packet generation rate control can be done by ignoring interference. Peak and average AoI for discrete time G/Ber/1 queue is analyzed for the first time, which may be of independent interest

    Spin wave dispersion based on the quasiparticle self-consistent GWGW method: NiO, MnO and α\alpha-MnAs

    Full text link
    We present spin wave dispersions in MnO, NiO, and α\alpha-MnAs based on the quasiparticle self-consistent GWGW method (\qsgw), which determines an optimum quasiparticle picture. For MnO and NiO, \qsgw results are in rather good agreement with experiments, in contrast to the LDA and LDA+U description. For α\alpha-MnAs, we find a collinear ferromagnetic ground state in \qsgw, while this phase is unstable in the LDA.Comment: V2: add another figure for SW life time. Formalism is detaile

    Exotic Gapless Mott Insulators of Bosons on Multi-Leg Ladders

    Get PDF
    We present evidence for an exotic gapless insulating phase of hard-core bosons on multi-leg ladders with a density commensurate with the number of legs. In particular, we study in detail a model of bosons moving with direct hopping and frustrating ring exchange on a 3-leg ladder at ν=1/3\nu=1/3 filling. For sufficiently large ring exchange, the system is insulating along the ladder but has two gapless modes and power law transverse density correlations at incommensurate wave vectors. We propose a determinantal wave function for this phase and find excellent comparison between variational Monte Carlo and density matrix renormalization group calculations on the model Hamiltonian, thus providing strong evidence for the existence of this exotic phase. Finally, we discuss extensions of our results to other NN-leg systems and to NN-layer two-dimensional structures.Comment: 5 pages, 4 figures; v3 is the print version; supplemental material attache

    Observation of Galactic Sources of Very High Energy Gamma-Rays with the MAGIC Telescope

    Get PDF
    The MAGIC telescope with its 17m diameter mirror is today the largest operating single-dish Imaging Air Cherenkov Telescope (IACT). It is located on the Canary Island La Palma, at an altitude of 2200m above sea level, as part of the Roque de los Muchachos European Northern Observatory. The MAGIC telescope detects celestial very high energy gamma-radiation in the energy band between about 50 GeV and 10 TeV. Since the autumn of 2004 MAGIC has been taking data routinely, observing various objects, like supernova remnants (SNRs), gamma-ray binaries, Pulsars, Active Galactic Nuclei (AGN) and Gamma-ray Bursts (GRB). We briefly describe the observational strategy, the procedure implemented for the data analysis, and discuss the results of observations of Galactic Sources.Comment: Brief Review, to be pulished in: Mod. Phys. Lett.

    Bose Metals and Insulators on Multi-Leg Ladders with Ring Exchange

    Get PDF
    We establish compelling evidence for the existence of new quasi-one-dimensional descendants of the d-wave Bose liquid (DBL), an exotic two-dimensional quantum phase of uncondensed itinerant bosons characterized by surfaces of gapless excitations in momentum space [O. I. Motrunich and M. P. A. Fisher, Phys. Rev. B {\bf 75}, 235116 (2007)]. In particular, motivated by a strong-coupling analysis of the gauge theory for the DBL, we study a model of hard-core bosons moving on the NN-leg square ladder with frustrating four-site ring exchange. Here, we focus on four- and three-leg systems where we have identified two novel phases: a compressible gapless Bose metal on the four-leg ladder and an incompressible gapless Mott insulator on the three-leg ladder. The former is conducting along the ladder and has five gapless modes, one more than the number of legs. This represents a significant step forward in establishing the potential stability of the DBL in two dimensions. The latter, on the other hand, is a fundamentally quasi-one-dimensional phase that is insulating along the ladder but has two gapless modes and incommensurate power law transverse density-density correlations. In both cases, we can understand the nature of the phase using slave-particle-inspired variational wave functions consisting of a product of two distinct Slater determinants, the properties of which compare impressively well to a density matrix renormalization group solution of the model Hamiltonian. Stability arguments are made in favor of both quantum phases by accessing the universal low-energy physics with a bosonization analysis of the appropriate quasi-1D gauge theory. We will briefly discuss the potential relevance of these findings to high-temperature superconductors, cold atomic gases, and frustrated quantum magnets.Comment: 33 pages, 16 figures; this is the print version, only very minor changes from v

    Post Quantum Cryptography from Mutant Prime Knots

    Full text link
    By resorting to basic features of topological knot theory we propose a (classical) cryptographic protocol based on the `difficulty' of decomposing complex knots generated as connected sums of prime knots and their mutants. The scheme combines an asymmetric public key protocol with symmetric private ones and is intrinsecally secure against quantum eavesdropper attacks.Comment: 14 pages, 5 figure
    • …
    corecore