98 research outputs found

    Efficacy of human resource development program for young industry personnel who will be involved in future medical device development

    Get PDF
    Background: Training next-generation personnel from small/medium enterprises (SMEs) is an urgent issue in promoting medical device research and development (R&D). Since 2014 we have engaged in governmentally funded human resource development program for medical/non-medical SMEs, and have assessed its effectiveness by analyzing self-evaluation of achievement level (SEAL) data obtained before and after the training course. Methods: Human resource development experts interviewed 34 key opinion leaders with deep knowledge of medical device R&D from industry, government, and academia. The skills required for R&D personnel were written down, and a set of skills was created by making a greatest common measure in the list of common elements among them. Using that skill sets, skill evaluations were conducted on trainees at “Osaka University Training Course,” twice before participation and after completion of the entire program using SEAL assessment. Results: There were 97 men and 25 women, with one-third in the’30 s. Among them, 61 participants (50%) were from R&D divisions, and 32 (26%) were from business/sales divisions. 94 (77%) were from medical SMEs, and 28 (23%) were from non-medical SMEs (new entry). After completing the training course, significant growth was observed in every item of both Soft and Hard skill sets. Especially in new entry SME members, a striking improvement was observed in practical medical knowledge to enhance communication with medical doctors (p < 0.0001). Conclusion: Our training course, though 7-day-short in total, showed that both Soft and Hard skills could be improved in young medical/non-medical SME members. Further assessment is needed to establish the necessary skill sets for our future partners from industries, to foster the creation of innovative medical devices through med-tech collaboration.The version of record of this article, first published in Surgical Endoscopy, is available online at Publisher’s website: https://doi.org/10.1007/s00464-023-10474-

    Exhaustion of nucleus pulposus progenitor cells with ageing and degeneration of the intervertebral disc.

    Get PDF
    Despite the high prevalence of intervertebral disc disease, little is known about changes in intervertebral disc cells and their regenerative potential with ageing and intervertebral disc degeneration. Here we identify populations of progenitor cells that are Tie2 positive (Tie2+) and disialoganglioside 2 positive (GD2+), in the nucleus pulposus from mice and humans. These cells form spheroid colonies that express type II collagen and aggrecan. They are clonally multipotent and differentiated into mesenchymal lineages and induced reorganization of nucleus pulposus tissue when transplanted into non-obese diabetic/severe combined immunodeficient mice. The frequency of Tie2+ cells in tissues from patients decreases markedly with age and degeneration of the intervertebral disc, suggesting exhaustion of their capacity for regeneration. However, progenitor cells (Tie2+GD2+) can be induced from their precursor cells (Tie2+GD2-) under simple culture conditions. Moreover, angiopoietin-1, a ligand of Tie2, is crucial for the survival of nucleus pulposus cells. Our results offer insights for regenerative therapy and a new diagnostic standard

    Superconductivity and physical properties of Ba24Si100 determined from electric transport, specific-heat capacity, and magnetic susceptibility measurements

    Get PDF
    Both Ba24Si100 and Ba24Ge100 with crystallographically identical structure are found to be superconducting at 1.4 and 0.27 K, respectively. Physical properties of this superconductor Ba24Si100 are studied by electric transport, specific heat capacity, and magnetic susceptibility measurements. The density of states at the Fermi level NEF=0.148 states eV-1(Siatom)-1 and a distinct jump of Cp at the superconducting transition temperature ΔCp=0.272JK-1mol-1 are obtained. An exponential fit of Cp below the superconducting states gives an energy gap 2Δ=0.423meV and shows that this is a superconductor having s-wave character or isotropic energy gap. On the basis of our experimental data other important physical parameters are also derived

    Two genetic variants of CD38 in subjects with autism spectrum disorder and controls

    Get PDF
    金沢大学医薬保健研究域医学系The neurobiological basis of autism spectrum disorder (ASD) remains poorly understood. Given the role of CD38 in social recognition through oxytocin (OT) release, we hypothesized that CD38 may play a role in the etiology of ASD. Here, we first examined the immunohistochemical expression of CD38 in the hypothalamus of post-mortem brains of non-ASD subjects and found that CD38 was colocalized with OT in secretory neurons. In studies of the association between CD38 and autism, we analyzed 10 single nucleotide polymorphisms (SNPs) and mutations of CD38 by re-sequencing DNAs mainly from a case-control study in Japan, and Caucasian cases mainly recruited to the Autism Genetic Resource Exchange (AGRE). The SNPs of CD38, rs6449197 (p 70; designated as high-functioning autism (HFA)) in the U.S. 104 AGRE family trios, but not with Japanese 188 HFA subjects. A mutation that caused tryptophan to replace arginine at amino acid residue 140 (R140W; (rs1800561, 4693C>T)) was found in 0.6-4.6% of the Japanese population and was associated with ASD in the smaller case-control study. The SNP was clustered in pedigrees in which the fathers and brothers of T-allele-carrier probands had ASD or ASD traits. In this cohort OT plasma levels were lower in subjects with the T allele than in those without. One proband with the T allele who was taking nasal OT spray showed relief of symptoms. The two variant CD38 poloymorphysms tested may be of interest with regard of the pathophysiology of ASD. © 2010 Elsevier Ireland Ltd and the Japan Neuroscience Society
    corecore