46 research outputs found

    Stable Wireless Network Control Under Service Constraints

    Full text link
    We consider the design of wireless queueing network control policies with particular focus on combining stability with additional application-dependent requirements. Thereby, we consequently pursue a cost function based approach that provides the flexibility to incorporate constraints and requirements of particular services or applications. As typical examples of such requirements, we consider the reduction of buffer underflows in case of streaming traffic, and energy efficiency in networks of battery powered nodes. Compared to the classical throughput optimal control problem, such requirements significantly complicate the control problem. We provide easily verifyable theoretical conditions for stability, and, additionally, compare various candidate cost functions applied to wireless networks with streaming media traffic. Moreover, we demonstrate how the framework can be applied to the problem of energy efficient routing, and we demonstrate the aplication of our framework in cross-layer control problems for wireless multihop networks, using an advanced power control scheme for interference mitigation, based on successive convex approximation. In all scenarios, the performance of our control framework is evaluated using extensive numerical simulations.Comment: Accepted for publication in IEEE Transactions on Control of Network Systems. arXiv admin note: text overlap with arXiv:1208.297

    Autonomous Algorithms for Centralized and Distributed Interference Coordination: A Virtual Layer Based Approach

    Get PDF
    Interference mitigation techniques are essential for improving the performance of interference limited wireless networks. In this paper, we introduce novel interference mitigation schemes for wireless cellular networks with space division multiple access (SDMA). The schemes are based on a virtual layer that captures and simplifies the complicated interference situation in the network and that is used for power control. We show how optimization in this virtual layer generates gradually adapting power control settings that lead to autonomous interference minimization. Thereby, the granularity of control ranges from controlling frequency sub-band power via controlling the power on a per-beam basis, to a granularity of only enforcing average power constraints per beam. In conjunction with suitable short-term scheduling, our algorithms gradually steer the network towards a higher utility. We use extensive system-level simulations to compare three distributed algorithms and evaluate their applicability for different user mobility assumptions. In particular, it turns out that larger gains can be achieved by imposing average power constraints and allowing opportunistic scheduling instantaneously, rather than controlling the power in a strict way. Furthermore, we introduce a centralized algorithm, which directly solves the underlying optimization and shows fast convergence, as a performance benchmark for the distributed solutions. Moreover, we investigate the deviation from global optimality by comparing to a branch-and-bound-based solution.Comment: revised versio

    Zuverlässige und herstellerübergreifende Medizingeräteinteroperabilität: Beiträge zur IEEE 11073 SDC-Normenfamilie

    Get PDF
    Medizingeräte im Krankenhaus sind heute fast ausschließlich isolierte Insellösungen. Sie stellen nach außen keine Informationen und Interaktionsmöglichkeiten bereit - oder nur innerhalb ihres geschlossenen Ökosystems. Daher führt diese Arbeit in die neue IEEE 11073 Service-oriented Device Connectivity (SDC)-Normenfamilie ein, die eine herstellerübergreifende Interoperabilität ermöglicht. Es werden drei Anwendungsbereiche betrachtet: zuverlässige Fernauslösung von Gerätefunktionalitäten, dynamische Assoziierung von Fernsteuerungselementen und -operationen und verteilte Alarmierungssysteme.Medical devices in today's hospitals are almost always isolated systems, which do not transmit information to or interact with external devices. At the most, this is possible within closed company ecosystems. Thus, this work introduces the new IEEE 11073 Service-oriented Device Connectivity (SDC) family of standards, which provides manufacturer-independent interoperability. Three fields of application are considered: safe activation of a device's functionality, dynamic association of a random number of remote-control elements and remote-controllable operations, and distributed alarm systems

    MIMO Systems with Reconfigurable Antennas: Joint Channel Estimation and Mode Selection

    Full text link
    Reconfigurable antennas (RAs) are a promising technology to enhance the capacity and coverage of wireless communication systems. However, RA systems have two major challenges: (i) High computational complexity of mode selection, and (ii) High overhead of channel estimation for all modes. In this paper, we develop a low-complexity iterative mode selection algorithm for data transmission in an RA-MIMO system. Furthermore, we study channel estimation of an RA multi-user MIMO system. However, given the coherence time, it is challenging to estimate channels of all modes. We propose a mode selection scheme to select a subset of modes, train channels for the selected subset, and predict channels for the remaining modes. In addition, we propose a prediction scheme based on pattern correlation between modes. Representative simulation results demonstrate the system's channel estimation error and achievable sum-rate for various selected modes and different signal-to-noise ratios (SNRs)

    Machine Learning-based Methods for Reconfigurable Antenna Mode Selection in MIMO Systems

    Full text link
    MIMO technology has enabled spatial multiple access and has provided a higher system spectral efficiency (SE). However, this technology has some drawbacks, such as the high number of RF chains that increases complexity in the system. One of the solutions to this problem can be to employ reconfigurable antennas (RAs) that can support different radiation patterns during transmission to provide similar performance with fewer RF chains. In this regard, the system aims to maximize the SE with respect to optimum beamforming design and RA mode selection. Due to the non-convexity of this problem, we propose machine learning-based methods for RA antenna mode selection in both dynamic and static scenarios. In the static scenario, we present how to solve the RA mode selection problem, an integer optimization problem in nature, via deep convolutional neural networks (DCNN). A Multi-Armed-bandit (MAB) consisting of offline and online training is employed for the dynamic RA state selection. For the proposed MAB, the computational complexity of the optimization problem is reduced. Finally, the proposed methods in both dynamic and static scenarios are compared with exhaustive search and random selection methods

    5GNOW: Challenging the LTE Design Paradigms of Orthogonality and Synchronicity

    Full text link
    LTE and LTE-Advanced have been optimized to deliver high bandwidth pipes to wireless users. The transport mechanisms have been tailored to maximize single cell performance by enforcing strict synchronism and orthogonality within a single cell and within a single contiguous frequency band. Various emerging trends reveal major shortcomings of those design criteria: 1) The fraction of machine-type-communications (MTC) is growing fast. Transmissions of this kind are suffering from the bulky procedures necessary to ensure strict synchronism. 2) Collaborative schemes have been introduced to boost capacity and coverage (CoMP), and wireless networks are becoming more and more heterogeneous following the non-uniform distribution of users. Tremendous efforts must be spent to collect the gains and to manage such systems under the premise of strict synchronism and orthogonality. 3) The advent of the Digital Agenda and the introduction of carrier aggregation are forcing the transmission systems to deal with fragmented spectrum. 5GNOW is an European research project supported by the European Commission within FP7 ICT Call 8. It will question the design targets of LTE and LTE-Advanced having these shortcomings in mind and the obedience to strict synchronism and orthogonality will be challenged. It will develop new PHY and MAC layer concepts being better suited to meet the upcoming needs with respect to service variety and heterogeneous transmission setups. Wireless transmission networks following the outcomes of 5GNOW will be better suited to meet the manifoldness of services, device classes and transmission setups present in envisioned future scenarios like smart cities. The integration of systems relying heavily on MTC into the communication network will be eased. The per-user experience will be more uniform and satisfying. To ensure this 5GNOW will contribute to upcoming 5G standardization.Comment: Submitted to Workshop on Mobile and Wireless Communication Systems for 2020 and beyond (at IEEE VTC 2013, Spring

    Machine Learning for QoS Prediction in Vehicular Communication: Challenges and Solution Approaches

    Full text link
    As cellular networks evolve towards the 6th generation, machine learning is seen as a key enabling technology to improve the capabilities of the network. Machine learning provides a methodology for predictive systems, which can make networks become proactive. This proactive behavior of the network can be leveraged to sustain, for example, a specific quality of service requirement. With predictive quality of service, a wide variety of new use cases, both safety- and entertainment-related, are emerging, especially in the automotive sector. Therefore, in this work, we consider maximum throughput prediction enhancing, for example, streaming or high-definition mapping applications. We discuss the entire machine learning workflow highlighting less regarded aspects such as the detailed sampling procedures, the in-depth analysis of the dataset characteristics, the effects of splits in the provided results, and the data availability. Reliable machine learning models need to face a lot of challenges during their lifecycle. We highlight how confidence can be built on machine learning technologies by better understanding the underlying characteristics of the collected data. We discuss feature engineering and the effects of different splits for the training processes, showcasing that random splits might overestimate performance by more than twofold. Moreover, we investigate diverse sets of input features, where network information proved to be most effective, cutting the error by half. Part of our contribution is the validation of multiple machine learning models within diverse scenarios. We also use explainable AI to show that machine learning can learn underlying principles of wireless networks without being explicitly programmed. Our data is collected from a deployed network that was under full control of the measurement team and covered different vehicular scenarios and radio environments.Comment: 18 pages, 12 Figures. Accepted on IEEE Acces
    corecore