15 research outputs found

    Exact solution of the Hu-Paz-Zhang master equation

    Get PDF
    The Hu-Paz-Zhang equation is a master equation for an oscillator coupled to a linear passive bath. It is exact within the assumption that the oscillator and bath are initially uncoupled . Here an exact general solution is obtained in the form of an expression for the Wigner function at time t in terms of the initial Wigner function. The result is applied to the motion of a Gaussian wave packet and to that of a pair of such wave packets. A serious divergence arising from the assumption of an initially uncoupled state is found to be due to the zero-point oscillations of the bath and not removed in a cutoff model. As a consequence, worthwhile results for the equation can only be obtained in the high temperature limit, where zero-point oscillations are neglected. In that limit closed form expressions for wave packet spreading and attenuation of coherence are obtained. These results agree within a numerical factor with those appearing in the literature, which apply for the case of a particle at zero temperature that is suddenly coupled to a bath at high temperature. On the other hand very different results are obtained for the physically consistent case in which the initial particle temperature is arranged to coincide with that of the bath

    Wigner Distribution Function Approach to Dissipative Problems in Quantum Mechanics with emphasis on Decoherence and Measurement Theory

    Get PDF
    We first review the usefulness of the Wigner distribution functions (WDF), associated with Lindblad and pre-master equations, for analyzing a host of problems in Quantum Optics where dissipation plays a major role, an arena where weak coupling and long-time approximations are valid. However, we also show their limitations for the discussion of decoherence, which is generally a short-time phenomenon with decay rates typically much smaller than typical dissipative decay rates. We discuss two approaches to the problem both of which use a quantum Langevin equation (QLE) as a starting-point: (a) use of a reduced WDF but in the context of an exact master equation (b) use of a WDF for the complete system corresponding to entanglement at all times

    Exact time evolution and master equations for the damped harmonic oscillator

    Get PDF
    Using the exact path integral solution for the damped harmonic oscillator it is shown that in general there does not exist an exact dissipative Liouville operator describing the dynamics of the oscillator for arbitrary initial bath preparations. Exact non-stationary Liouville operators can be found only for particular preparations. Three physically meaningful examples are examined. An exact new master equation is derived for thermal initial conditions. Second, the Liouville operator governing the time-evolution of equilibrium correlations is obtained. Third, factorizing initial conditions are studied. Additionally, one can show that there are approximate Liouville operators independent of the initial preparation describing the long time dynamics under appropriate conditions. The general form of these approximate master equations is derived and the coefficients are determined for special cases of the bath spectral density including the Ohmic, Drude and weak coupling cases. The connection with earlier work is discussed.Comment: to be published in Phys. Rev.

    Stochastic Collapse and Decoherence of a Non-Dissipative Forced Harmonic Oscillator

    Full text link
    Careful monitoring of harmonically bound (or as a limiting case, free) masses is the basis of current and future gravitational wave detectors, and of nanomechanical devices designed to access the quantum regime. We analyze the effects of stochastic localization models for state vector reduction, and of related models for environmental decoherence, on such systems, focusing our analysis on the non-dissipative forced harmonic oscillator, and its free mass limit. We derive an explicit formula for the time evolution of the expectation of a general operator in the presence of stochastic reduction or environmentally induced decoherence, for both the non-dissipative harmonic oscillator and the free mass. In the case of the oscillator, we also give a formula for the time evolution of the matrix element of the stochastic expectation density matrix between general coherent states. We show that the stochastic expectation of the variance of a Hermitian operator in any unraveling of the stochastic process is bounded by the variance computed from the stochastic expectation of the density matrix, and we develop a formal perturbation theory for calculating expectation values of operators within any unraveling. Applying our results to current gravitational wave interferometer detectors and nanomechanical systems, we conclude that the deviations from quantum mechanics predicted by the continuous spontaneous localization (CSL) model of state vector reduction are at least five orders of magnitude below the relevant standard quantum limits for these experiments. The proposed LISA gravitational wave detector will be two orders of magnitude away from the capability of observing an effect.Comment: TeX; 34 page

    Self-Similar Interpolation in Quantum Mechanics

    Full text link
    An approach is developed for constructing simple analytical formulae accurately approximating solutions to eigenvalue problems of quantum mechanics. This approach is based on self-similar approximation theory. In order to derive interpolation formulae valid in the whole range of parameters of considered physical quantities, the self-similar renormalization procedure is complimented here by boundary conditions which define control functions guaranteeing correct asymptotic behaviour in the vicinity of boundary points. To emphasize the generality of the approach, it is illustrated by different problems that are typical for quantum mechanics, such as anharmonic oscillators, double-well potentials, and quasiresonance models with quasistationary states. In addition, the nonlinear Schr\"odinger equation is considered, for which both eigenvalues and wave functions are constructed.Comment: 1 file, 30 pages, RevTex, no figure

    Computersimulation zur Modenselektivitaet in einfachen und komplexen chemischen Modelsystemen

    No full text
    Available from TIB Hannover: DW 1499 / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEDEGerman
    corecore