29 research outputs found

    EFFECTIVE DOSE MEASUREMENT FOR CONE BEAM COMPUTED TOMOGRAPHY USING GLASS DOSIMETER

    Get PDF
    During image-guided radiation therapy, the patient is exposed to unwanted radiation from imaging devices built into the medical LINAC. In the present study, the effective dose delivered to a patient from a cone beam computed tomography (CBCT) machine was measured. Absorbed doses in specific organs listed in ICRP Publication 103 were measured with glass dosimeters calibrated with kilovolt (kV) X-rays using a whole body physical phantom for typical radiotherapy sites, including the head and neck, chest, and pelvis. The effective dose per scan for the head and neck, chest, and pelvis were 3.37±0.29, 7.36±0.33, and 4.09±0.29 mSv, respectively. The results highlight the importance of the compensation of treatment dose by managing imaging dose

    Deep Learning-Aided Downlink Beamforming Design and Uplink Power Allocation for UAV Wireless Communications with LoRa

    No full text
    In this paper, we consider an unmanned aerial vehicle (UAV) wireless communication system where a base station (BS) equipped multi antennas communicates with multiple UAVs, each equipped with a single antenna, using the LoRa (Long Range) modulation. The traditional approaches for downlink beamforming design or uplink power allocation rely on the convex optimization technique, which is prohibitive in practice or even infeasible for the UAVs with limited computing capabilities, because the corresponding convex optimization problems (such as second-order cone programming (SOCP) and linear programming (LP)) requiring a non-negligible complexity need to be re-solved many times while the UAVs move. To address this issue, we propose novel schemes for beamforming design for downlink transmission from the BS to the UAVs and power allocation for uplink transmission from the UAVs to the BS, respectively, based on deep learning. Numerical results demonstrate a constructed deep neural network (DNN) can predict the optimal value of the downlink beamforming or the uplink power allocation with low complexity and high accuracy

    Study on the keV neutron capture reaction in

    No full text
    The neutron capture cross-sections and the radiative capture gamma-ray spectra from the broad resonances of 56Fe and 57Fe in the neutron energy range from 10 to 90keV and 550keV have been measured with an anti-Compton NaI(Tl) detector. Pulsed keV neutrons were produced from the 7Li(p,n) (p,n) 7Be reaction by bombarding the lithium target with the 1.5ns bunched proton beam from the 3MV Pelletron accelerator. The incident neutron spectrum on a capture sample was measured by means of a time-of-flight (TOF) method with a 6Li -glass detector. The number of weighted capture counts of the iron or gold sample was obtained by applying a pulse height weighting technique to the corresponding capture gamma-ray pulse height spectrum. The neutron capture gamma-ray spectra were obtained by unfolding the observed capture gamma-ray pulse height spectra. To achieve further understanding on the mechanism of neutron radiative capture reaction and study on physics models, theoretical calculations of the γ \gamma -ray spectra for 56Fe and 57Fe with the POD program have been performed by applying the Hauser-Feshbach statistical model. The dominant ingredients to perform the statistical calculation were the Optical Model Potential (OMP), the level densities described by the Mengoni-Nakajima approach, and the γ \gamma -ray transmission coefficients described by γ \gamma -ray strength functions. The comparison of the theoretical calculations, performed only for the 550keV point, show a good agreement with the present experimental results

    Determination of flux-weighted average cross-sections of

    No full text
    The flux-weighted average cross-sections of the natPb(γ\gamma,xn)198-204Pb reaction for the bremsstrahlung end-point energies of 50-70MeV were determined by activation and off-line γ \gamma -ray spectrometric technique, using the 100 MeV electron linac at the Pohang Accelerator Laboratory (PAL), Korea. The relative cross-sections of the 208Pb(γ\gamma,xn)202-204Pb and 209Bi(γ\gamma,xn)203-206Bi reactions from our earlier work were updated to absolute values and compared with the present data. The photo-neutron cross-sections of natPb, 208Pb, and 209Bi were also calculated, as a function of the photon energy using the TALYS 1.6 code. The flux-weighted average cross-sections were obtained from the theoretical values of the TALYS 1.6 code, based on mono-energetic photons, and compared with the present experimental data. The values were found to be in good agreement with the present data for the 209Bi(γ\gamma,xn)203-206Bi, 208Pb(γ\gamma,xn)202-204Pb, and natPb(γ\gamma,xn)198-202Pb reactions. However, the present data for the natPb(γ\gamma,xn)203, 204Pb reactions were higher than the flux-weighted values obtained using the TALYS 1.6 code

    Activity concentrations and radiological hazard assessments of 226Ra, 232Th, 40K, and 137Cs in soil samples obtained from the Dongnam Institute of Radiological & Medical Science, Korea

    No full text
    The radioactivity concentration of environmental radionuclides was analyzed for soil and sand at eight locations within a radius of 255 m centered on the Dongnam Institute of Radiological & Medical Science (DIRAMS), Korea. The average activity concentrations of 40K, 137Cs, 226Ra, and 232Th were 661.1 Bq/kg-dry, 0.9 Bq/kg-dry, 21.9 Bq/kg-dry, and 11.1 Bq/kg-dry, respectively. The activity of 40K and 137Cs was lower than the 3-year (2017–2019) average reported by the Korea Institute of Nuclear Safety, respectively. Due to the nature of granite-rich soil, the radioactivity of 40K was 0.6-fold higher than in other countries, while 137Cs was in the normal fluctuation range (15–30 Bq/kg-dry) of the concentration of radioactive fallout from nuclear tests. The activity of 226Ra and 232Th was lower than in Korean soils reported by the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). The average activity concentrations of 232Th and 40K for the soil and sand samples from DIRAMS were within the range specified by UNSCEAR in 2000. The radium equivalent activity and internal and external hazard index values were below the recommended limits (1 mSv/y). These radionuclide concentration (226Ra, 232Th, 40K, and 137Cs) data can be used for regional environmental monitoring and ecological impact assessments of nuclear power plant accidents

    Differential Effects of Low and High Radiation Dose Rates on Mouse Spermatogenesis

    No full text
    The adverse effects of radiation are proportional to the total dose and dose rate. We aimed to investigate the effects of radiation dose rate on different organs in mice. The mice were subjected to low dose rate (LDR, ~3.4 mGy/h) and high dose rate (HDR, ~51 Gy/h) radiation. LDR radiation caused severe tissue toxicity, as observed in the histological analysis of testis. It adversely influenced sperm production, including sperm count and motility, and induced greater sperm abnormalities. The expression of markers of early stage spermatogonial stem cells, such as Plzf, c-Kit, and Oct4, decreased significantly after LDR irradiation, compared to that following exposure of HDR radiation, in qPCR analysis. The compositional ratios of all stages of spermatogonia and meiotic cells, except round spermatid, were considerably reduced by LDR in FACS analysis. Therefore, LDR radiation caused more adverse testicular damage than that by HDR radiation, contrary to the response observed in other organs. Therefore, the dose rate of radiation may have differential effects, depending on the organ; it is necessary to evaluate the effect of radiation in terms of radiation dose, dose rate, organ type, and other conditions

    iPSC-Derived MSCs Are a Distinct Entity of MSCs with Higher Therapeutic Potential than Their Donor-Matched Parental MSCs

    No full text
    Mesenchymal stromal cells derived from induced pluripotent stem cells (iMSCs) have been proposed as alternative sources of primary MSCs with various advantages for cell therapeutic trials. However, precise evaluation of the differences between iMSCs and primary MSCs is lacking due to individual variations in the donor cells, which obscure direct comparisons between the two. In this study, we generated donor-matched iMSCs from individual bone marrow-derived MSCs and directly compared their cell-autonomous and paracrine therapeutic effects. We found that the transition from primary MSCs to iMSCs is accompanied by a functional shift towards higher proliferative activity, with variations in differentiation potential in a donor cell-dependent manner. The transition from MSCs to iMSCs was associated with common changes in transcriptomic and proteomic profiles beyond the variations of their individual donors, revealing expression patterns unique for the iMSCs. These iMSC-specific patterns were characterized by a shift in cell fate towards a pericyte-like state and enhanced secretion of paracrine cytokine/growth factors. Accordingly, iMSCs exhibited higher support for the self-renewing expansion of primitive hematopoietic progenitors and more potent immune suppression of allogenic immune responses than MSCs. Our study suggests that iMSCs represent a separate entity of MSCs with unique therapeutic potential distinct from their parental MSCs, but points to the need for iMSC characterization in the individual basis

    Second intercomparison on electron paramagnetic resonance (EPR) retrospective dosimetry in Korea using hydroxyapatite

    No full text
    The Korea retrospective dosimetry (KREDOS)–electron paramagnetic resonance (EPR) group undertook an intercomparison investigation utilizing hydroxyapatite. This analysis involved four institutions: the Korea Institute of Radiological and Medical Sciences, Dongnam Institute of Radiological and Medical Sciences, Korean Association for Radiation Application, and Radiation Health Institute of Korea Hydro & Nuclear Power. Following the irradiation of the hydroxyapatite sample, the recorded build-up was analyzed. To validate the reliability of the EPR dosimetry findings and enhance its operational performance, a hydroxyapatite dose–response curve was plotted and dosimetry was performed for a blind sample. The proficiency of each laboratory was assessed by employing an interlaboratory comparison methodology. This involved a comparative analysis of the measurement results by calculating the relative bias, z-score, and En value. The results submitted by the participating laboratories demonstrated satisfactory ratings for doses of 1.006, 3.999, and 6.993 Gy. Following the second intercomparison, efforts to optimize their hydroxyapatite-EPR dosimetry systems are underway in the participating laboratories. The current assessment of hydroxyapatite dose yielded the foundational data required to establish the parameters of dental dosimetry. In future, the third intercomparison experiment will be conducted for exploring other materials
    corecore